A novel biosensor for the ultrasensitive detection of the lncRNA biomarker MALAT1 in non-small cell lung cancer
Abstract Long non-coding RNAs (lncRNAs) have been proposed as diagnostic biomarkers for the screening of non-small cell lung cancer and monitoring disease progression. Accordingly, new, rapid, and cost-effective lncRNA biosensors that can be used clinically are urgently needed. Herein, a novel effec...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1a47d249c084d5fbb6e09ebbd068f36 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Long non-coding RNAs (lncRNAs) have been proposed as diagnostic biomarkers for the screening of non-small cell lung cancer and monitoring disease progression. Accordingly, new, rapid, and cost-effective lncRNA biosensors that can be used clinically are urgently needed. Herein, a novel effective and ultrasensitive electrochemical biosensor was developed based on a gold nanocage coupled with an amidated multi-walled carbon nanotube (Au NCs/MWCNT-NH2)-decorated screen-printed carbon electrode (SPCE). Because of its large surface area, superior conductivity, and excellent biocompatibility, this SPCE Au NCs/MWCNT-NH2 lncRNA biosensor showed a wide linear range (10–7–10–14 M) and low limit of detection limit (42.8 fM) coupled with satisfactory selectivity and stability. Compared to traditional RT-PCR, the proposed method exhibits acceptable stability, good selectivity, is simpler to operate, has faster detection, and uses less costly raw materials. In summary, this biosensor may be a powerful tool for detecting lncRNAs for efficient clinical prognosis and cancer diagnosis. |
---|