Masked graph modeling for molecule generation
Generating new sensible molecular structures is a key problem in computer aided drug discovery. Here the authors propose a graph-based molecular generative model that outperforms previously proposed graph-based generative models of molecules and performs comparably to several SMILES-based models.
Guardado en:
Autores principales: | Omar Mahmood, Elman Mansimov, Richard Bonneau, Kyunghyun Cho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1a490c11d414498808c7560daa63abb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Structure-based protein function prediction using graph convolutional networks
por: Vladimir Gligorijević, et al.
Publicado: (2021) -
Automated Generation of Masked Hardware
por: David Knichel, et al.
Publicado: (2021) -
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Ioana Bica, et al.
Publicado: (2020) -
Fast physical repetitive patterns generation for masking in time-delay reservoir computing
por: Apostolos Argyris, et al.
Publicado: (2021) -
FlavorGraph: a large-scale food-chemical graph for generating food representations and recommending food pairings
por: Donghyeon Park, et al.
Publicado: (2021)