Image Denoising Using Nonlocal Regularized Deep Image Prior

Deep neural networks have shown great potential in various low-level vision tasks, leading to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised fashion usually requires the collection of a great number of examples and the consumption of a significant...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhonghua Xie, Lingjun Liu, Zhongliang Luo, Jianfeng Huang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f1a59cb80852453da2d0d92f316142c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1a59cb80852453da2d0d92f316142c0
record_format dspace
spelling oai:doaj.org-article:f1a59cb80852453da2d0d92f316142c02021-11-25T19:06:51ZImage Denoising Using Nonlocal Regularized Deep Image Prior10.3390/sym131121142073-8994https://doaj.org/article/f1a59cb80852453da2d0d92f316142c02021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2114https://doaj.org/toc/2073-8994Deep neural networks have shown great potential in various low-level vision tasks, leading to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised fashion usually requires the collection of a great number of examples and the consumption of a significant amount of time. However, the collection of training samples is very difficult for some application scenarios, such as the full-sampled data of magnetic resonance imaging and the data of satellite remote sensing imaging. In this paper, we overcome the problem of a lack of training data by using an unsupervised deep-learning-based method. Specifically, we propose a deep-learning-based method based on the deep image prior (DIP) method, which only requires a noisy image as training data, without any clean data. It infers the natural images with random inputs and the corrupted observation with the help of performing correction via a convolutional network. We improve the original DIP method as follows: Firstly, the original optimization objective function is modified by adding nonlocal regularizers, consisting of a spatial filter and a frequency domain filter, to promote the gradient sparsity of the solution. Secondly, we solve the optimization problem with the alternating direction method of multipliers (ADMM) framework, resulting in two separate optimization problems, including a symmetric U-Net training step and a plug-and-play proximal denoising step. As such, the proposed method exploits the powerful denoising ability of both deep neural networks and nonlocal regularizations. Experiments validate the effectiveness of leveraging a combination of DIP and nonlocal regularizers, and demonstrate the superior performance of the proposed method both quantitatively and visually compared with the original DIP method.Zhonghua XieLingjun LiuZhongliang LuoJianfeng HuangMDPI AGarticledeep neural networksdeep image prior (DIP)nonlocal regularizerplug-and-playalternating direction method of multipliers (ADMM)MathematicsQA1-939ENSymmetry, Vol 13, Iss 2114, p 2114 (2021)
institution DOAJ
collection DOAJ
language EN
topic deep neural networks
deep image prior (DIP)
nonlocal regularizer
plug-and-play
alternating direction method of multipliers (ADMM)
Mathematics
QA1-939
spellingShingle deep neural networks
deep image prior (DIP)
nonlocal regularizer
plug-and-play
alternating direction method of multipliers (ADMM)
Mathematics
QA1-939
Zhonghua Xie
Lingjun Liu
Zhongliang Luo
Jianfeng Huang
Image Denoising Using Nonlocal Regularized Deep Image Prior
description Deep neural networks have shown great potential in various low-level vision tasks, leading to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised fashion usually requires the collection of a great number of examples and the consumption of a significant amount of time. However, the collection of training samples is very difficult for some application scenarios, such as the full-sampled data of magnetic resonance imaging and the data of satellite remote sensing imaging. In this paper, we overcome the problem of a lack of training data by using an unsupervised deep-learning-based method. Specifically, we propose a deep-learning-based method based on the deep image prior (DIP) method, which only requires a noisy image as training data, without any clean data. It infers the natural images with random inputs and the corrupted observation with the help of performing correction via a convolutional network. We improve the original DIP method as follows: Firstly, the original optimization objective function is modified by adding nonlocal regularizers, consisting of a spatial filter and a frequency domain filter, to promote the gradient sparsity of the solution. Secondly, we solve the optimization problem with the alternating direction method of multipliers (ADMM) framework, resulting in two separate optimization problems, including a symmetric U-Net training step and a plug-and-play proximal denoising step. As such, the proposed method exploits the powerful denoising ability of both deep neural networks and nonlocal regularizations. Experiments validate the effectiveness of leveraging a combination of DIP and nonlocal regularizers, and demonstrate the superior performance of the proposed method both quantitatively and visually compared with the original DIP method.
format article
author Zhonghua Xie
Lingjun Liu
Zhongliang Luo
Jianfeng Huang
author_facet Zhonghua Xie
Lingjun Liu
Zhongliang Luo
Jianfeng Huang
author_sort Zhonghua Xie
title Image Denoising Using Nonlocal Regularized Deep Image Prior
title_short Image Denoising Using Nonlocal Regularized Deep Image Prior
title_full Image Denoising Using Nonlocal Regularized Deep Image Prior
title_fullStr Image Denoising Using Nonlocal Regularized Deep Image Prior
title_full_unstemmed Image Denoising Using Nonlocal Regularized Deep Image Prior
title_sort image denoising using nonlocal regularized deep image prior
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f1a59cb80852453da2d0d92f316142c0
work_keys_str_mv AT zhonghuaxie imagedenoisingusingnonlocalregularizeddeepimageprior
AT lingjunliu imagedenoisingusingnonlocalregularizeddeepimageprior
AT zhongliangluo imagedenoisingusingnonlocalregularizeddeepimageprior
AT jianfenghuang imagedenoisingusingnonlocalregularizeddeepimageprior
_version_ 1718410315660525568