Image Denoising Using Nonlocal Regularized Deep Image Prior
Deep neural networks have shown great potential in various low-level vision tasks, leading to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised fashion usually requires the collection of a great number of examples and the consumption of a significant...
Guardado en:
Autores principales: | Zhonghua Xie, Lingjun Liu, Zhongliang Luo, Jianfeng Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1a59cb80852453da2d0d92f316142c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Plug-and-Play ADMM for MRI Reconstruction With Convex Nonconvex Sparse Regularization
por: Jincheng Li, et al.
Publicado: (2021) -
Change Detection in Hyperdimensional Images Using Untrained Models
por: Sudipan Saha, et al.
Publicado: (2021) -
Space-dependent heat source determination problem with nonlocal periodic boundary conditions
por: M.J. Huntul
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
Bayesian Inference under Small Sample Sizes Using General Noninformative Priors
por: Jingjing He, et al.
Publicado: (2021)