Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes |
---|