Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors

The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes

Guardado en:
Detalles Bibliográficos
Autores principales: Biaobin Jiang, Quanhua Mu, Fufang Qiu, Xuefeng Li, Weiqi Xu, Jun Yu, Weilun Fu, Yong Cao, Jiguang Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes