Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f1a63a56f3864a8bb3b89959ab118679 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f1a63a56f3864a8bb3b89959ab1186792021-11-21T12:35:33ZMachine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors10.1038/s41467-021-27017-w2041-1723https://doaj.org/article/f1a63a56f3864a8bb3b89959ab1186792021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27017-whttps://doaj.org/toc/2041-1723The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomesBiaobin JiangQuanhua MuFufang QiuXuefeng LiWeiqi XuJun YuWeilun FuYong CaoJiguang WangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Biaobin Jiang Quanhua Mu Fufang Qiu Xuefeng Li Weiqi Xu Jun Yu Weilun Fu Yong Cao Jiguang Wang Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
description |
The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes |
format |
article |
author |
Biaobin Jiang Quanhua Mu Fufang Qiu Xuefeng Li Weiqi Xu Jun Yu Weilun Fu Yong Cao Jiguang Wang |
author_facet |
Biaobin Jiang Quanhua Mu Fufang Qiu Xuefeng Li Weiqi Xu Jun Yu Weilun Fu Yong Cao Jiguang Wang |
author_sort |
Biaobin Jiang |
title |
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
title_short |
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
title_full |
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
title_fullStr |
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
title_full_unstemmed |
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
title_sort |
machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679 |
work_keys_str_mv |
AT biaobinjiang machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT quanhuamu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT fufangqiu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT xuefengli machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT weiqixu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT junyu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT weilunfu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT yongcao machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors AT jiguangwang machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors |
_version_ |
1718418921879502848 |