Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors

The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes

Guardado en:
Detalles Bibliográficos
Autores principales: Biaobin Jiang, Quanhua Mu, Fufang Qiu, Xuefeng Li, Weiqi Xu, Jun Yu, Weilun Fu, Yong Cao, Jiguang Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1a63a56f3864a8bb3b89959ab118679
record_format dspace
spelling oai:doaj.org-article:f1a63a56f3864a8bb3b89959ab1186792021-11-21T12:35:33ZMachine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors10.1038/s41467-021-27017-w2041-1723https://doaj.org/article/f1a63a56f3864a8bb3b89959ab1186792021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27017-whttps://doaj.org/toc/2041-1723The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomesBiaobin JiangQuanhua MuFufang QiuXuefeng LiWeiqi XuJun YuWeilun FuYong CaoJiguang WangNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Biaobin Jiang
Quanhua Mu
Fufang Qiu
Xuefeng Li
Weiqi Xu
Jun Yu
Weilun Fu
Yong Cao
Jiguang Wang
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
description The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes
format article
author Biaobin Jiang
Quanhua Mu
Fufang Qiu
Xuefeng Li
Weiqi Xu
Jun Yu
Weilun Fu
Yong Cao
Jiguang Wang
author_facet Biaobin Jiang
Quanhua Mu
Fufang Qiu
Xuefeng Li
Weiqi Xu
Jun Yu
Weilun Fu
Yong Cao
Jiguang Wang
author_sort Biaobin Jiang
title Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
title_short Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
title_full Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
title_fullStr Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
title_full_unstemmed Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
title_sort machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679
work_keys_str_mv AT biaobinjiang machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT quanhuamu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT fufangqiu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT xuefengli machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT weiqixu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT junyu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT weilunfu machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT yongcao machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
AT jiguangwang machinelearningofgenomicfeaturesinorganotropicmetastasesstratifiesprogressionriskofprimarytumors
_version_ 1718418921879502848