Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
The location and timing of metastasis are still fundamentally unpredictable. Here the authors present the Metastatic Network model, a machine learning framework that integrates clinical data and DNA alterations to predict the risk of metastasis to specific organs as well as clinical outcomes
Guardado en:
Autores principales: | Biaobin Jiang, Quanhua Mu, Fufang Qiu, Xuefeng Li, Weiqi Xu, Jun Yu, Weilun Fu, Yong Cao, Jiguang Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1a63a56f3864a8bb3b89959ab118679 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Are we there yet? A machine learning architecture to predict organotropic metastases
por: Michael Skaro, et al.
Publicado: (2021) -
Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer
por: Cenzhu Wang, et al.
Publicado: (2021) -
Clinical and ultrasonographic features of choroidal metastases based on primary cancer site: Long-term experience in a single center.
por: Maria Antonietta Blasi, et al.
Publicado: (2021) -
Proteome biology of primary colorectal carcinoma and corresponding liver metastases
por: Matthias Fahrner, et al.
Publicado: (2021) -
Exploring impact and features of machine vision for progressive industry 4.0 culture
por: Mohd Javaid, et al.
Publicado: (2022)