Deformations of Strong Kähler with torsion metrics

Existence of strong Kähler with torsion metrics, shortly SKT metrics, on complex manifolds has been shown to be unstable under small deformations. We find necessary conditions under which the property of being SKT is stable for a smooth curve of Hermitian metrics {ωt }t which equals a fixed SKT metr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Piovani Riccardo, Sferruzza Tommaso
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/f1afc4b71c544fd5bc791c80a47e4243
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1afc4b71c544fd5bc791c80a47e4243
record_format dspace
spelling oai:doaj.org-article:f1afc4b71c544fd5bc791c80a47e42432021-12-05T14:10:45ZDeformations of Strong Kähler with torsion metrics2300-744310.1515/coma-2020-0120https://doaj.org/article/f1afc4b71c544fd5bc791c80a47e42432021-10-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0120https://doaj.org/toc/2300-7443Existence of strong Kähler with torsion metrics, shortly SKT metrics, on complex manifolds has been shown to be unstable under small deformations. We find necessary conditions under which the property of being SKT is stable for a smooth curve of Hermitian metrics {ωt }t which equals a fixed SKT metric ω for t = 0, along a differentiable family of complex manifolds {Mt}t.Piovani RiccardoSferruzza TommasoDe Gruyterarticleskt metricsdeformations of complex structures32g0553b3553c55MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 286-301 (2021)
institution DOAJ
collection DOAJ
language EN
topic skt metrics
deformations of complex structures
32g05
53b35
53c55
Mathematics
QA1-939
spellingShingle skt metrics
deformations of complex structures
32g05
53b35
53c55
Mathematics
QA1-939
Piovani Riccardo
Sferruzza Tommaso
Deformations of Strong Kähler with torsion metrics
description Existence of strong Kähler with torsion metrics, shortly SKT metrics, on complex manifolds has been shown to be unstable under small deformations. We find necessary conditions under which the property of being SKT is stable for a smooth curve of Hermitian metrics {ωt }t which equals a fixed SKT metric ω for t = 0, along a differentiable family of complex manifolds {Mt}t.
format article
author Piovani Riccardo
Sferruzza Tommaso
author_facet Piovani Riccardo
Sferruzza Tommaso
author_sort Piovani Riccardo
title Deformations of Strong Kähler with torsion metrics
title_short Deformations of Strong Kähler with torsion metrics
title_full Deformations of Strong Kähler with torsion metrics
title_fullStr Deformations of Strong Kähler with torsion metrics
title_full_unstemmed Deformations of Strong Kähler with torsion metrics
title_sort deformations of strong kähler with torsion metrics
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/f1afc4b71c544fd5bc791c80a47e4243
work_keys_str_mv AT piovaniriccardo deformationsofstrongkahlerwithtorsionmetrics
AT sferruzzatommaso deformationsofstrongkahlerwithtorsionmetrics
_version_ 1718371772968992768