Arhgap21 Deficiency Results in Increase of Osteoblastic Lineage Cells in the Murine Bone Marrow Microenvironment

ARHGAP21 is a member of the RhoGAP family of proteins involved in cell growth, differentiation, and adhesion. We have previously shown that the heterozygous Arhgap21 knockout mouse model (Arhgap21+/−) presents several alterations in the hematopoietic compartment, including increased frequency of hem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mariana Ferreira Pissarra, Cristiane Okuda Torello, Rafael Gonçalves Barbosa Gomes, Rodrigo Naoto Shiraishi, Irene Santos, Karla Priscila Vieira Ferro, Matheus Rodrigues Lopes, Patricia Maria Bergamo Favaro, Sara Teresinha Olalla Saad, Mariana Lazarini
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/f1b339ee32af4665bb0f5d054c68e215
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ARHGAP21 is a member of the RhoGAP family of proteins involved in cell growth, differentiation, and adhesion. We have previously shown that the heterozygous Arhgap21 knockout mouse model (Arhgap21+/−) presents several alterations in the hematopoietic compartment, including increased frequency of hematopoietic stem and progenitor cells (HSPC) with impaired adhesion in vitro, increased mobilization to peripheral blood, and decreased engraftment after bone marrow transplantation. Although these HSPC functions strongly depend on their interactions with the components of the bone marrow (BM) niche, the role of ARHGAP21 in the marrow microenvironment has not yet been explored. In this study, we investigated the composition and function of the BM microenvironment in Arhgap21+/− mice. The BM of Arhgap21+/− mice presented a significant increase in the frequency of phenotypic osteoblastic lineage cells, with no differences in the frequencies of multipotent stromal cells or endothelial cells when compared to the BM of wild type mice. Arhgap21+/− BM cells had increased capacity of generating osteogenic colony-forming units (CFU-OB) in vitro and higher levels of osteocalcin were detected in the Arhgap21+/− BM supernatant. Increased expression of Col1a1, Ocn and decreased expression of Trap1 were observed after osteogenic differentiation of Arhgap21+/− BM cells. In addition, Arhgap21+/− mice recipients of normal BM cells showed decreased leucocyte numbers during transplantation recovery. Our data suggest participation of ARHGAP21 in the balanced composition of the BM microenvironment through the regulation of osteogenic differentiation.