Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis.
When approaching thyroid gland tumor classification, the differentiation between samples with and without "papillary thyroid carcinoma-like" nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning...
Guardado en:
Autores principales: | Moritz Böhland, Lars Tharun, Tim Scherr, Ralf Mikut, Veit Hagenmeyer, Lester D R Thompson, Sven Perner, Markus Reischl |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1cd060f440044d3b6b4f08051f6350e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction.
por: Katharina Löffler, et al.
Publicado: (2021) -
Metastatic papillary thyroid carcinoma to the nose: report and review of cutaneous metastases of papillary thyroid cancer
por: Philip R. Cohen
Publicado: (2015) -
A case of papillary hyperplasia of thyroid misdiagnosed as papillary thyroid carcinoma: Case report and review of literature
por: Sara Faisal Alharbi, et al.
Publicado: (2021) -
Impact of Multifocality on the Recurrence of Papillary Thyroid Carcinoma
por: Joohyun Woo, et al.
Publicado: (2021)