Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia.

<h4>Background</h4>In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP - protein kinase A and of the Ras-extracellular signal-regulated kinase (ERK) signalling...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Emanuela Santini, Veronique Sgambato-Faure, Qin Li, Marc Savasta, Sandra Dovero, Gilberto Fisone, Erwan Bezard
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2010
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/f1d6fedef81d4d898a7f2cf72f1af488
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:<h4>Background</h4>In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP - protein kinase A and of the Ras-extracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia.<h4>Methodology/results</h4>We here studied, in the gold-standard non-human primate model of Parkinson's disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment.<h4>Conclusion</h4>Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure. While cAMP signalling enhancement is associated with dyskinesia, abnormal ERK signalling is associated with priming.