Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain

Abstract As a means to understand human neuropsychiatric disorders from human brain samples, we compared the transcription patterns and histological features of postmortem brain to fresh human neocortex isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fabien Dachet, James B. Brown, Tibor Valyi-Nagy, Kunwar D. Narayan, Anna Serafini, Nathan Boley, Thomas R. Gingeras, Susan E. Celniker, Gayatry Mohapatra, Jeffrey A. Loeb
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f1dbaf6e474940d2872df80387ee6579
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1dbaf6e474940d2872df80387ee6579
record_format dspace
spelling oai:doaj.org-article:f1dbaf6e474940d2872df80387ee65792021-12-02T17:04:05ZSelective time-dependent changes in activity and cell-specific gene expression in human postmortem brain10.1038/s41598-021-85801-62045-2322https://doaj.org/article/f1dbaf6e474940d2872df80387ee65792021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85801-6https://doaj.org/toc/2045-2322Abstract As a means to understand human neuropsychiatric disorders from human brain samples, we compared the transcription patterns and histological features of postmortem brain to fresh human neocortex isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease-associated postmortem transcriptomes, the fresh human brain transcriptome had an entirely unique transcriptional pattern. To understand this difference, we measured genome-wide transcription as a function of time after fresh tissue removal to mimic the postmortem interval. Within a few hours, a selective reduction in the number of neuronal activity-dependent transcripts occurred with relative preservation of housekeeping genes commonly used as a reference for RNA normalization. Gene clustering indicated a rapid reduction in neuronal gene expression with a reciprocal time-dependent increase in astroglial and microglial gene expression that continued to increase for at least 24 h after tissue resection. Predicted transcriptional changes were confirmed histologically on the same tissue demonstrating that while neurons were degenerating, glial cells underwent an outgrowth of their processes. The rapid loss of neuronal genes and reciprocal expression of glial genes highlights highly dynamic transcriptional and cellular changes that occur during the postmortem interval. Understanding these time-dependent changes in gene expression in post mortem brain samples is critical for the interpretation of research studies on human brain disorders.Fabien DachetJames B. BrownTibor Valyi-NagyKunwar D. NarayanAnna SerafiniNathan BoleyThomas R. GingerasSusan E. CelnikerGayatry MohapatraJeffrey A. LoebNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Fabien Dachet
James B. Brown
Tibor Valyi-Nagy
Kunwar D. Narayan
Anna Serafini
Nathan Boley
Thomas R. Gingeras
Susan E. Celniker
Gayatry Mohapatra
Jeffrey A. Loeb
Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
description Abstract As a means to understand human neuropsychiatric disorders from human brain samples, we compared the transcription patterns and histological features of postmortem brain to fresh human neocortex isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease-associated postmortem transcriptomes, the fresh human brain transcriptome had an entirely unique transcriptional pattern. To understand this difference, we measured genome-wide transcription as a function of time after fresh tissue removal to mimic the postmortem interval. Within a few hours, a selective reduction in the number of neuronal activity-dependent transcripts occurred with relative preservation of housekeeping genes commonly used as a reference for RNA normalization. Gene clustering indicated a rapid reduction in neuronal gene expression with a reciprocal time-dependent increase in astroglial and microglial gene expression that continued to increase for at least 24 h after tissue resection. Predicted transcriptional changes were confirmed histologically on the same tissue demonstrating that while neurons were degenerating, glial cells underwent an outgrowth of their processes. The rapid loss of neuronal genes and reciprocal expression of glial genes highlights highly dynamic transcriptional and cellular changes that occur during the postmortem interval. Understanding these time-dependent changes in gene expression in post mortem brain samples is critical for the interpretation of research studies on human brain disorders.
format article
author Fabien Dachet
James B. Brown
Tibor Valyi-Nagy
Kunwar D. Narayan
Anna Serafini
Nathan Boley
Thomas R. Gingeras
Susan E. Celniker
Gayatry Mohapatra
Jeffrey A. Loeb
author_facet Fabien Dachet
James B. Brown
Tibor Valyi-Nagy
Kunwar D. Narayan
Anna Serafini
Nathan Boley
Thomas R. Gingeras
Susan E. Celniker
Gayatry Mohapatra
Jeffrey A. Loeb
author_sort Fabien Dachet
title Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
title_short Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
title_full Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
title_fullStr Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
title_full_unstemmed Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
title_sort selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f1dbaf6e474940d2872df80387ee6579
work_keys_str_mv AT fabiendachet selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT jamesbbrown selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT tiborvalyinagy selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT kunwardnarayan selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT annaserafini selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT nathanboley selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT thomasrgingeras selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT susanecelniker selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT gayatrymohapatra selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
AT jeffreyaloeb selectivetimedependentchangesinactivityandcellspecificgeneexpressioninhumanpostmortembrain
_version_ 1718381884197568512