Avalanches and edge-of-chaos learning in neuromorphic nanowire networks

Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Joel Hochstetter, Ruomin Zhu, Alon Loeffler, Adrian Diaz-Alvarez, Tomonobu Nakayama, Zdenka Kuncic
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.