Avalanches and edge-of-chaos learning in neuromorphic nanowire networks

Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.

Guardado en:
Detalles Bibliográficos
Autores principales: Joel Hochstetter, Ruomin Zhu, Alon Loeffler, Adrian Diaz-Alvarez, Tomonobu Nakayama, Zdenka Kuncic
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1e7ff5dc9f5497497fbb5eca62674e4
record_format dspace
spelling oai:doaj.org-article:f1e7ff5dc9f5497497fbb5eca62674e42021-12-02T16:10:51ZAvalanches and edge-of-chaos learning in neuromorphic nanowire networks10.1038/s41467-021-24260-z2041-1723https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e42021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24260-zhttps://doaj.org/toc/2041-1723Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.Joel HochstetterRuomin ZhuAlon LoefflerAdrian Diaz-AlvarezTomonobu NakayamaZdenka KuncicNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joel Hochstetter
Ruomin Zhu
Alon Loeffler
Adrian Diaz-Alvarez
Tomonobu Nakayama
Zdenka Kuncic
Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
description Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.
format article
author Joel Hochstetter
Ruomin Zhu
Alon Loeffler
Adrian Diaz-Alvarez
Tomonobu Nakayama
Zdenka Kuncic
author_facet Joel Hochstetter
Ruomin Zhu
Alon Loeffler
Adrian Diaz-Alvarez
Tomonobu Nakayama
Zdenka Kuncic
author_sort Joel Hochstetter
title Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
title_short Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
title_full Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
title_fullStr Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
title_full_unstemmed Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
title_sort avalanches and edge-of-chaos learning in neuromorphic nanowire networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4
work_keys_str_mv AT joelhochstetter avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks
AT ruominzhu avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks
AT alonloeffler avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks
AT adriandiazalvarez avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks
AT tomonobunakayama avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks
AT zdenkakuncic avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks
_version_ 1718384446994907136