Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f1e7ff5dc9f5497497fbb5eca62674e4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f1e7ff5dc9f5497497fbb5eca62674e42021-12-02T16:10:51ZAvalanches and edge-of-chaos learning in neuromorphic nanowire networks10.1038/s41467-021-24260-z2041-1723https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e42021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24260-zhttps://doaj.org/toc/2041-1723Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.Joel HochstetterRuomin ZhuAlon LoefflerAdrian Diaz-AlvarezTomonobu NakayamaZdenka KuncicNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joel Hochstetter Ruomin Zhu Alon Loeffler Adrian Diaz-Alvarez Tomonobu Nakayama Zdenka Kuncic Avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
description |
Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks. |
format |
article |
author |
Joel Hochstetter Ruomin Zhu Alon Loeffler Adrian Diaz-Alvarez Tomonobu Nakayama Zdenka Kuncic |
author_facet |
Joel Hochstetter Ruomin Zhu Alon Loeffler Adrian Diaz-Alvarez Tomonobu Nakayama Zdenka Kuncic |
author_sort |
Joel Hochstetter |
title |
Avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
title_short |
Avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
title_full |
Avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
title_fullStr |
Avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
title_full_unstemmed |
Avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
title_sort |
avalanches and edge-of-chaos learning in neuromorphic nanowire networks |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4 |
work_keys_str_mv |
AT joelhochstetter avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks AT ruominzhu avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks AT alonloeffler avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks AT adriandiazalvarez avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks AT tomonobunakayama avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks AT zdenkakuncic avalanchesandedgeofchaoslearninginneuromorphicnanowirenetworks |
_version_ |
1718384446994907136 |