Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.
Guardado en:
Autores principales: | Joel Hochstetter, Ruomin Zhu, Alon Loeffler, Adrian Diaz-Alvarez, Tomonobu Nakayama, Zdenka Kuncic |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Information dynamics in neuromorphic nanowire networks
por: Ruomin Zhu, et al.
Publicado: (2021) -
Temporal profiles of avalanches on networks
por: James P. Gleeson, et al.
Publicado: (2017) -
Neuromorphic atomic switch networks.
por: Audrius V Avizienis, et al.
Publicado: (2012) -
Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities
por: Gianluca Milano, et al.
Publicado: (2018) -
Avalanche precursors of failure in hierarchical fuse networks
por: Paolo Moretti, et al.
Publicado: (2018)