Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
Neuromorphic nanowire networks are found to exhibit neural-like dynamics, including phase transitions and avalanche criticality. Hochstetter and Kuncic et al. show that the dynamical state at the edge-of-chaos is optimal for learning and favours computationally complex information processing tasks.
Enregistré dans:
Auteurs principaux: | Joel Hochstetter, Ruomin Zhu, Alon Loeffler, Adrian Diaz-Alvarez, Tomonobu Nakayama, Zdenka Kuncic |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f1e7ff5dc9f5497497fbb5eca62674e4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Information dynamics in neuromorphic nanowire networks
par: Ruomin Zhu, et autres
Publié: (2021) -
Temporal profiles of avalanches on networks
par: James P. Gleeson, et autres
Publié: (2017) -
Neuromorphic atomic switch networks.
par: Audrius V Avizienis, et autres
Publié: (2012) -
Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities
par: Gianluca Milano, et autres
Publié: (2018) -
Avalanche precursors of failure in hierarchical fuse networks
par: Paolo Moretti, et autres
Publié: (2018)