Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance

OBJECTIVES: Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) represent the most frequent molecular aberrations in acute myeloid leukemia (AML) and are associated with an inferior prognosis. The pattern of downstream activation by this constitutively activated receptor tyr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maximilian Fleischmann, Mike Fischer, Ulf Schnetzke, Colin Fortner, Joanna Kirkpatrick, Florian H. Heidel, Andreas Hochhaus, Sebastian Scholl
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
AML
VPA
Acceso en línea:https://doaj.org/article/f1f3d0de94324f91b33d1ea4ce8bcb3d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f1f3d0de94324f91b33d1ea4ce8bcb3d
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic AML
FLT3-ITD
HSP90
tunicamycin
17-AAG
VPA
Biology (General)
QH301-705.5
spellingShingle AML
FLT3-ITD
HSP90
tunicamycin
17-AAG
VPA
Biology (General)
QH301-705.5
Maximilian Fleischmann
Mike Fischer
Ulf Schnetzke
Colin Fortner
Joanna Kirkpatrick
Florian H. Heidel
Andreas Hochhaus
Sebastian Scholl
Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance
description OBJECTIVES: Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) represent the most frequent molecular aberrations in acute myeloid leukemia (AML) and are associated with an inferior prognosis. The pattern of downstream activation by this constitutively activated receptor tyrosine kinase is influenced by the localization of FLT3-ITD depending on its glycosylation status. Different pharmacological approaches can affect FLT3-ITD-driven oncogenic pathways by the modulation of FLT3-ITD localization. AIMS: The objective of this study was to investigate the effects of N-glycosylation inhibitors (tunicamycin or 2-deoxy-D-glucose) or the histone deacetylase inhibitor valproic acid (VPA) on FLT3-ITD localization and downstream activity. We sought to determine the potential differences between the distinct FLT3-ITD variants, particularly concerning their susceptibility towards combined treatment by addressing either N-glycosylation and the heat shock protein 90 (HSP90) by 17-AAG, or by targeting the PI3K/AKT/mTOR pathway by rapamycin after treatment with VPA. METHODS: Murine Ba/F3 leukemia cell lines were stably transfected with distinct FLT3-ITD variants resulting in IL3-independent growth. These Ba/F3 FLT3-ITD cell lines or FLT3-ITD-expressing human MOLM13 cells were exposed to tunicamycin, 2-deoxy-D-glucose or VPA, and 17-AAG or rapamycin, and characterized in terms of downstream signaling by immunoblotting. FLT3 surface expression, apoptosis, and metabolic activity were analyzed by flow cytometry or an MTS assay. Proteome analysis by liquid chromatography–tandem mass spectrometry was performed to assess differential protein expression. RESULTS: The susceptibility of FLT3-ITD-expressing cells to 17-AAG after pre-treatment with tunicamycin or 2-deoxy-D-glucose was demonstrated. Importantly, in Ba/F3 cells that were stably expressing distinct FLT3-ITD variants that were located either in the juxtamembrane domain (JMD) or in the tyrosine kinase 1 domain (TKD1), response to the sequential treatments with tunicamycin and 17-AAG varied between individual FLT3-ITD motifs without dependence on the localization of the ITD. In all of the FLT3-ITD cell lines that were investigated, incubation with tunicamycin was accompanied by intracellular retention of FLT3-ITD due to the inhibition of glycosylation. In contrast, treatment of Ba/F3-FLT3-ITD cells with VPA was associated with a significant increase of FLT3-ITD surface expression depending on FLT3 protein synthesis. The allocation of FLT3 to different cellular compartments that was induced by tunicamycin, 2-deoxy-D-glucose, or VPA resulted in the activation of distinct downstream signaling pathways. Whole proteome analyses of Ba/F3 FLT3-ITD cells revealed up-regulation of the relevant chaperone proteins (e.g., calreticulin, calnexin, HSP90beta1) that are directly involved in the stabilization of FLT3-ITD or in its retention in the ER compartment. CONCLUSION: The allocation of FLT3-ITD to different cellular compartments and targeting distinct downstream signaling pathways by combined treatment with N-glycosylation and HSP90 inhibitors or VPA and rapamycin might represent new therapeutic strategies to overcome resistance towards tyrosine kinase inhibitors in FLT3-ITD-positive AML. The treatment approaches addressing N-glycosylation of FLT3-ITD appear to depend on patient-specific FLT3-ITD sequences, potentially affecting the efficacy of such pharmacological strategies.
format article
author Maximilian Fleischmann
Mike Fischer
Ulf Schnetzke
Colin Fortner
Joanna Kirkpatrick
Florian H. Heidel
Andreas Hochhaus
Sebastian Scholl
author_facet Maximilian Fleischmann
Mike Fischer
Ulf Schnetzke
Colin Fortner
Joanna Kirkpatrick
Florian H. Heidel
Andreas Hochhaus
Sebastian Scholl
author_sort Maximilian Fleischmann
title Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance
title_short Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance
title_full Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance
title_fullStr Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance
title_full_unstemmed Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance
title_sort modulation of flt3-itd localization and targeting of distinct downstream signaling pathways as potential strategies to overcome flt3-inhibitor resistance
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f1f3d0de94324f91b33d1ea4ce8bcb3d
work_keys_str_mv AT maximilianfleischmann modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT mikefischer modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT ulfschnetzke modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT colinfortner modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT joannakirkpatrick modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT florianhheidel modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT andreashochhaus modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
AT sebastianscholl modulationofflt3itdlocalizationandtargetingofdistinctdownstreamsignalingpathwaysaspotentialstrategiestoovercomeflt3inhibitorresistance
_version_ 1718412687392636928
spelling oai:doaj.org-article:f1f3d0de94324f91b33d1ea4ce8bcb3d2021-11-25T17:10:10ZModulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance10.3390/cells101129922073-4409https://doaj.org/article/f1f3d0de94324f91b33d1ea4ce8bcb3d2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4409/10/11/2992https://doaj.org/toc/2073-4409OBJECTIVES: Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) represent the most frequent molecular aberrations in acute myeloid leukemia (AML) and are associated with an inferior prognosis. The pattern of downstream activation by this constitutively activated receptor tyrosine kinase is influenced by the localization of FLT3-ITD depending on its glycosylation status. Different pharmacological approaches can affect FLT3-ITD-driven oncogenic pathways by the modulation of FLT3-ITD localization. AIMS: The objective of this study was to investigate the effects of N-glycosylation inhibitors (tunicamycin or 2-deoxy-D-glucose) or the histone deacetylase inhibitor valproic acid (VPA) on FLT3-ITD localization and downstream activity. We sought to determine the potential differences between the distinct FLT3-ITD variants, particularly concerning their susceptibility towards combined treatment by addressing either N-glycosylation and the heat shock protein 90 (HSP90) by 17-AAG, or by targeting the PI3K/AKT/mTOR pathway by rapamycin after treatment with VPA. METHODS: Murine Ba/F3 leukemia cell lines were stably transfected with distinct FLT3-ITD variants resulting in IL3-independent growth. These Ba/F3 FLT3-ITD cell lines or FLT3-ITD-expressing human MOLM13 cells were exposed to tunicamycin, 2-deoxy-D-glucose or VPA, and 17-AAG or rapamycin, and characterized in terms of downstream signaling by immunoblotting. FLT3 surface expression, apoptosis, and metabolic activity were analyzed by flow cytometry or an MTS assay. Proteome analysis by liquid chromatography–tandem mass spectrometry was performed to assess differential protein expression. RESULTS: The susceptibility of FLT3-ITD-expressing cells to 17-AAG after pre-treatment with tunicamycin or 2-deoxy-D-glucose was demonstrated. Importantly, in Ba/F3 cells that were stably expressing distinct FLT3-ITD variants that were located either in the juxtamembrane domain (JMD) or in the tyrosine kinase 1 domain (TKD1), response to the sequential treatments with tunicamycin and 17-AAG varied between individual FLT3-ITD motifs without dependence on the localization of the ITD. In all of the FLT3-ITD cell lines that were investigated, incubation with tunicamycin was accompanied by intracellular retention of FLT3-ITD due to the inhibition of glycosylation. In contrast, treatment of Ba/F3-FLT3-ITD cells with VPA was associated with a significant increase of FLT3-ITD surface expression depending on FLT3 protein synthesis. The allocation of FLT3 to different cellular compartments that was induced by tunicamycin, 2-deoxy-D-glucose, or VPA resulted in the activation of distinct downstream signaling pathways. Whole proteome analyses of Ba/F3 FLT3-ITD cells revealed up-regulation of the relevant chaperone proteins (e.g., calreticulin, calnexin, HSP90beta1) that are directly involved in the stabilization of FLT3-ITD or in its retention in the ER compartment. CONCLUSION: The allocation of FLT3-ITD to different cellular compartments and targeting distinct downstream signaling pathways by combined treatment with N-glycosylation and HSP90 inhibitors or VPA and rapamycin might represent new therapeutic strategies to overcome resistance towards tyrosine kinase inhibitors in FLT3-ITD-positive AML. The treatment approaches addressing N-glycosylation of FLT3-ITD appear to depend on patient-specific FLT3-ITD sequences, potentially affecting the efficacy of such pharmacological strategies.Maximilian FleischmannMike FischerUlf SchnetzkeColin FortnerJoanna KirkpatrickFlorian H. HeidelAndreas HochhausSebastian SchollMDPI AGarticleAMLFLT3-ITDHSP90tunicamycin17-AAGVPABiology (General)QH301-705.5ENCells, Vol 10, Iss 2992, p 2992 (2021)