Empirical Comparisons for Combining Balancing and Feature Selection Strategies for Characterizing Football Players Using FIFA Video Game System
The process of modelling individual player performance using machine learning is a mature task in sports analytics. The most significant challenges in machine learning include class imbalance and high dimensionality problems. We conducted a comprehensive literature review and observed that both the...
Guardado en:
Autores principales: | Mustafa A. Al-Asadi, Sakir Tasdemir |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2064bc0164941bd959f378dfaff65c1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The meaning of the experience of being an online video game player
por: Kelly Arbeau, et al.
Publicado: (2020) -
USING RANKING MODELS TO ASSESS THE LEVEL OF FOOTBALL DEVELOPMENT IN FIFA COUNTRIES
por: Anatoliy I. Vorob'ev, et al.
Publicado: (2017) -
Between Beats: Linking Player Engagement to Advertisement Frequency and Intrusiveness
por: Markus Hirsimaki, et al.
Publicado: (2021) -
Differences in Bodily Growth Between Young Footballers and Basketball Players
por: Rexhepi,Agron, et al.
Publicado: (2010) -
Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
por: Shengxue Zhu, et al.
Publicado: (2021)