Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks
Relatively little is understood about seasonal effect of climate change on the Amazon rainforest. Here, the authors show that Amazon forest loss in response to dry-season intensification during the last glacial period was likely self-amplified by regional vegetation-rainfall feedbacks.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2181aee6d3c4e94a1d9a5baa0b9cf4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f2181aee6d3c4e94a1d9a5baa0b9cf4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f2181aee6d3c4e94a1d9a5baa0b9cf4e2021-12-02T14:40:35ZSelf-amplified Amazon forest loss due to vegetation-atmosphere feedbacks10.1038/ncomms146812041-1723https://doaj.org/article/f2181aee6d3c4e94a1d9a5baa0b9cf4e2017-03-01T00:00:00Zhttps://doi.org/10.1038/ncomms14681https://doaj.org/toc/2041-1723Relatively little is understood about seasonal effect of climate change on the Amazon rainforest. Here, the authors show that Amazon forest loss in response to dry-season intensification during the last glacial period was likely self-amplified by regional vegetation-rainfall feedbacks.Delphine Clara ZempCarl-Friedrich SchleussnerHenrique M. J. BarbosaMarina HirotaVincent MontadeGilvan SampaioArie StaalLan Wang-ErlandssonAnja RammigNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Delphine Clara Zemp Carl-Friedrich Schleussner Henrique M. J. Barbosa Marina Hirota Vincent Montade Gilvan Sampaio Arie Staal Lan Wang-Erlandsson Anja Rammig Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks |
description |
Relatively little is understood about seasonal effect of climate change on the Amazon rainforest. Here, the authors show that Amazon forest loss in response to dry-season intensification during the last glacial period was likely self-amplified by regional vegetation-rainfall feedbacks. |
format |
article |
author |
Delphine Clara Zemp Carl-Friedrich Schleussner Henrique M. J. Barbosa Marina Hirota Vincent Montade Gilvan Sampaio Arie Staal Lan Wang-Erlandsson Anja Rammig |
author_facet |
Delphine Clara Zemp Carl-Friedrich Schleussner Henrique M. J. Barbosa Marina Hirota Vincent Montade Gilvan Sampaio Arie Staal Lan Wang-Erlandsson Anja Rammig |
author_sort |
Delphine Clara Zemp |
title |
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks |
title_short |
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks |
title_full |
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks |
title_fullStr |
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks |
title_full_unstemmed |
Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks |
title_sort |
self-amplified amazon forest loss due to vegetation-atmosphere feedbacks |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/f2181aee6d3c4e94a1d9a5baa0b9cf4e |
work_keys_str_mv |
AT delphineclarazemp selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT carlfriedrichschleussner selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT henriquemjbarbosa selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT marinahirota selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT vincentmontade selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT gilvansampaio selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT ariestaal selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT lanwangerlandsson selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks AT anjarammig selfamplifiedamazonforestlossduetovegetationatmospherefeedbacks |
_version_ |
1718390271700369408 |