Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity
Changes in terrestrial net primary productivity (NPP) with climate were thought to arise from the direct effects of temperature and precipitation on plant metabolism. However, the change of NPP may be due to the indirect effect of global hydrothermal pattern changes caused by climate change on veget...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2209ecbe6e64749989e3a69df53f662 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f2209ecbe6e64749989e3a69df53f662 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f2209ecbe6e64749989e3a69df53f6622021-12-01T05:01:52ZConvergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity1470-160X10.1016/j.ecolind.2021.108282https://doaj.org/article/f2209ecbe6e64749989e3a69df53f6622021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X2100947Xhttps://doaj.org/toc/1470-160XChanges in terrestrial net primary productivity (NPP) with climate were thought to arise from the direct effects of temperature and precipitation on plant metabolism. However, the change of NPP may be due to the indirect effect of global hydrothermal pattern changes caused by climate change on vegetation distribution. To prove this hypothesis, this study uses land outside Antarctica as the study area, combines temperature and precipitation into standard scores, classifies the globe into four hydrothermal types: warm-wet, warm-dry, cold-wet and cold-dry, analyses changes in hydrothermal patterns since 2000, relates them to changes in NPP, to explains the relationship between changes in global hydrothermal patterns and NPP of vegetation. We found that climate warming reduced the area difference of the four hydrothermal types, which led to the increase of vegetation NPP. The mechanism is mainly manifested in a convergence model of hydrothermal pattern of dry wet transformation (i.e. dry to wet, wet to dry). This shows that the global water and heat distribution has a balanced trend, which is shown as a better resource allocation scheme. This perspective provides a new explanation for the increase in global NPP in terms of global hydrothermal resource allocation, which could enhance the understanding of the impact of global warming on terrestrial vegetation productivity and improve the predictions of global carbon cycle models.Chuanhua LiMin ZhouTianbao DouTongbin ZhuHuanhuan YinLihui LiuElsevierarticleGlobal warmingHydrothermal patternConvergence effectDry and wet interconversionNet primary productivityEcologyQH540-549.5ENEcological Indicators, Vol 132, Iss , Pp 108282- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Global warming Hydrothermal pattern Convergence effect Dry and wet interconversion Net primary productivity Ecology QH540-549.5 |
spellingShingle |
Global warming Hydrothermal pattern Convergence effect Dry and wet interconversion Net primary productivity Ecology QH540-549.5 Chuanhua Li Min Zhou Tianbao Dou Tongbin Zhu Huanhuan Yin Lihui Liu Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
description |
Changes in terrestrial net primary productivity (NPP) with climate were thought to arise from the direct effects of temperature and precipitation on plant metabolism. However, the change of NPP may be due to the indirect effect of global hydrothermal pattern changes caused by climate change on vegetation distribution. To prove this hypothesis, this study uses land outside Antarctica as the study area, combines temperature and precipitation into standard scores, classifies the globe into four hydrothermal types: warm-wet, warm-dry, cold-wet and cold-dry, analyses changes in hydrothermal patterns since 2000, relates them to changes in NPP, to explains the relationship between changes in global hydrothermal patterns and NPP of vegetation. We found that climate warming reduced the area difference of the four hydrothermal types, which led to the increase of vegetation NPP. The mechanism is mainly manifested in a convergence model of hydrothermal pattern of dry wet transformation (i.e. dry to wet, wet to dry). This shows that the global water and heat distribution has a balanced trend, which is shown as a better resource allocation scheme. This perspective provides a new explanation for the increase in global NPP in terms of global hydrothermal resource allocation, which could enhance the understanding of the impact of global warming on terrestrial vegetation productivity and improve the predictions of global carbon cycle models. |
format |
article |
author |
Chuanhua Li Min Zhou Tianbao Dou Tongbin Zhu Huanhuan Yin Lihui Liu |
author_facet |
Chuanhua Li Min Zhou Tianbao Dou Tongbin Zhu Huanhuan Yin Lihui Liu |
author_sort |
Chuanhua Li |
title |
Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
title_short |
Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
title_full |
Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
title_fullStr |
Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
title_full_unstemmed |
Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
title_sort |
convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/f2209ecbe6e64749989e3a69df53f662 |
work_keys_str_mv |
AT chuanhuali convergenceofglobalhydrothermalpatternleadstoanincreaseinvegetationnetprimaryproductivity AT minzhou convergenceofglobalhydrothermalpatternleadstoanincreaseinvegetationnetprimaryproductivity AT tianbaodou convergenceofglobalhydrothermalpatternleadstoanincreaseinvegetationnetprimaryproductivity AT tongbinzhu convergenceofglobalhydrothermalpatternleadstoanincreaseinvegetationnetprimaryproductivity AT huanhuanyin convergenceofglobalhydrothermalpatternleadstoanincreaseinvegetationnetprimaryproductivity AT lihuiliu convergenceofglobalhydrothermalpatternleadstoanincreaseinvegetationnetprimaryproductivity |
_version_ |
1718405639068188672 |