Proportion Estimation for Urban Mixed Scenes Based on Nonnegative Matrix Factorization for High-Spatial Resolution Remote Sensing Images
High-spatial resolution urban scenes, which contain ecological, social, and environmental zones, are composed of diverse functional areas. Depicting urban scenes from both qualitative and quantitative aspects, i.e., scene classification and scene unmixing, are increasingly important tasks. The purpo...
Enregistré dans:
Auteurs principaux: | Qiqi Zhu, Jiale Chen, Linlin Wang, Qingfeng Guan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f222f83121c247d38e84f1b4eba40b4e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
par: Pablo Gomez, et autres
Publié: (2021) -
CFCANet: A Complete Frequency Channel Attention Network for SAR Image Scene Classification
par: Bo Su, et autres
Publié: (2021) -
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
par: E. M. M. B. Ekanayake, et autres
Publié: (2021) -
Adaptive Deep Co-Occurrence Feature Learning Based on Classifier-Fusion for Remote Sensing Scene Classification
par: Ronald Tombe, et autres
Publié: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
par: Lulu Wan, et autres
Publié: (2021)