Detection of eye contact with deep neural networks is as accurate as human experts
Eye contact is a key social behavior and its measurement could facilitate the diagnosis and treatment of autism. Here the authors show that a deep neural network model can detect eye contact as accurately has human experts.
Guardado en:
Autores principales: | Eunji Chong, Elysha Clark-Whitney, Audrey Southerland, Elizabeth Stubbs, Chanel Miller, Eliana L. Ajodan, Melanie R. Silverman, Catherine Lord, Agata Rozga, Rebecca M. Jones, James M. Rehg |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f237553c732548f58bf57fdc2d279307 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accelerating eye movement research via accurate and affordable smartphone eye tracking
por: Nachiappan Valliappan, et al.
Publicado: (2020) -
Contact lens & anterior eye the journal of the British Contact Lens Association.
Publicado: (1997) -
The Development of Russian-Chinese Expert Contacts on International Relations
por: I. A. Safranchuk
Publicado: (2015) -
Feasibility on accurate measurement of non-uniform strain field through contact methods
por: Pratyush Kumar, et al.
Publicado: (2021) -
Changes in the Eye Microbiota Associated with Contact Lens Wearing
por: Hakdong Shin, et al.
Publicado: (2016)