IOX1 activity as sepsis therapy and an antibiotic against multidrug-resistant bacteria

Abstract Sepsis is caused by organ dysfunction initiated by an unrestrained host immune response to infection. The emergence of antibiotic-resistant bacteria has rapidly increased in the last decades and has stimulated a firm research platform to combat infections caused by antibiotic-resistant bact...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Su Jin Lee, Jueng Soo You, Amal Gharbi, Yong Joo Kim, Mi Suk Lee, Dong Hwan Kim, Keun Woo Lee, In Duk Jung, Yeong Min Park
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f2408c62fcc84bdaaaea1ace308d3416
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Sepsis is caused by organ dysfunction initiated by an unrestrained host immune response to infection. The emergence of antibiotic-resistant bacteria has rapidly increased in the last decades and has stimulated a firm research platform to combat infections caused by antibiotic-resistant bacteria that cannot be eradicated with conventional antibiotics. Strategies like epigenetic regulators such as lysine demethylase (Kdm) has received attention as a new target. Thus, we sought to investigate the epigenetic mechanisms in sepsis pathophysiology with the aim of discovering new concepts for treatment. A transcriptome analysis of dendritic cells during their inflammatory state identified Kdm as a critical molecule in sepsis regulation. Next, 8-hydroxyquinoline-5-carboxylic acid (IOX1) ability to control endotoxemia induced by Lipopolysaccharide and bacterial sepsis was demonstrated. IOX1 has been shown to regulate endotoxemia and sepsis caused by Escherichia coli and carbapenem-resistant Acinetobacter baumannii and has also contributed to the suppression of multidrug-resistant bacterial growth through the inhibition of DNA Gyrase. These findings show that IOX1 could be a component agent against bacterial sepsis by functioning as a broad-spectrum antibiotic with dual effects.