Causal networks for climate model evaluation and constrained projections
Algorithms to assess causal relationships in data sets have seen increasing applications in climate science in recent years. Here, the authors show that these techniques can help to systematically evaluate the performance of climate models and, as a result, to constrain uncertainties in future clima...
Guardado en:
Autores principales: | Peer Nowack, Jakob Runge, Veronika Eyring, Joanna D. Haigh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2492531e1f54417b930e5cbab085b2d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamic Bayesian Networks for Evaluation of Granger Causal Relationships in Climate Reanalyses
por: Dylan Harries, et al.
Publicado: (2021) -
Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate
por: Thomas W. Wong Hearing, et al.
Publicado: (2021) -
Plasticity in the macromolecular-scale causal networks of cell migration.
por: John G Lock, et al.
Publicado: (2014) -
Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model
por: Joshua Krissansen-Totton, et al.
Publicado: (2017) -
Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions
por: Marc Peaucelle, et al.
Publicado: (2019)