FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
Convolutional neural networks (CNNs) are widely used in modern applications for their versatility and high classification accuracy. Field-programmable gate arrays (FPGAs) are considered to be suitable platforms for CNNs based on their high performance, rapid development, and reconfigurability. Altho...
Guardado en:
Autores principales: | Mannhee Cho, Youngmin Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f24a1a1f14d7485baa6623c4d2ba1546 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
por: Lin Huang, et al.
Publicado: (2021) -
Design of universal convolutional layer IP core based on FPGA
por: Guochen AN, et al.
Publicado: (2021) -
Review on FPGA-Based Accelerators in Deep Learning
por: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publicado: (2021) -
Experimental Validation of Predictive Current Control for DFIG: FPGA Implementation
por: Manale Bouderbala, et al.
Publicado: (2021) -
Fixed-Point Processing of the SAR Back-Projection Algorithm on FPGA
por: Don Lahiru Nirmal Hettiarachchi, et al.
Publicado: (2021)