Using machine learning and big data to explore the drug resistance landscape in HIV.
Drug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs are commonly transmitted to naive patients. The standard approach to reveal new DRMs is to test for significant frequency differences of mutations between treated and naive patients. However, we then consider each mutation...
Enregistré dans:
Auteurs principaux: | Luc Blassel, Anna Tostevin, Christian Julian Villabona-Arenas, Martine Peeters, Stéphane Hué, Olivier Gascuel, UK HIV Drug Resistance Database |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f24dab1ce4724b9696dc6e25ea878cb0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The HIV-1 subtype C epidemic in South America is linked to the United Kingdom.
par: Tulio de Oliveira, et autres
Publié: (2010) -
The contribution of viral genotype to plasma viral set-point in HIV infection.
par: Emma Hodcroft, et autres
Publié: (2014) -
Exploring the Microbiome Analysis and Visualization Landscape
par: Jannes Peeters, et autres
Publié: (2021) -
An Optimized Machine Learning and Big Data Approach to Crime Detection
par: Ashokkumar Palanivinayagam, et autres
Publié: (2021) -
Three-Dimensional Structure Analysis of Urban Landscape Based on Big Data Technology and Digital Technology
par: Xiaozhou Yang, et autres
Publié: (2021)