Large-scale nonlinear Granger causality for inferring directed dependence from short multivariate time-series data
Abstract A key challenge to gaining insight into complex systems is inferring nonlinear causal directional relations from observational time-series data. Specifically, estimating causal relationships between interacting components in large systems with only short recordings over few temporal observa...
Guardado en:
Autores principales: | Axel Wismüller, Adora M. Dsouza, M. Ali Vosoughi, Anas Abidin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f25323c5047c44b7a97ce17913dbbeed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality
por: Guanxue Yang, et al.
Publicado: (2017) -
A review of the Granger-causality fallacy
por: Mariusz Maziarz
Publicado: (2015) -
Causality Distance Measures for Multivariate Time Series with Applications
por: Achilleas Anastasiou, et al.
Publicado: (2021) -
Dynamic Bayesian Networks for Evaluation of Granger Causal Relationships in Climate Reanalyses
por: Dylan Harries, et al.
Publicado: (2021) -
Geopolitical tensions, opec news, and the oil price: A Granger causality analysis
por: Fernandois,Antonio, et al.
Publicado: (2020)