Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar.
Present day risk assessment on the spreading of airborne viruses is often based on the classical Wells-Riley model assuming immediate mixing of the aerosol into the studied environment. Here, we improve on this approach and the underlying assumptions by modeling the space-time dependency of the aero...
Enregistré dans:
Auteurs principaux: | Henri Salmenjoki, Marko Korhonen, Antti Puisto, Ville Vuorinen, Mikko J Alava |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f261fa3da9f54b7a860c6b0a5dce9f65 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine learning plastic deformation of crystals
par: Henri Salmenjoki, et autres
Publié: (2018) -
Monte Carlo methods and applications
Publié: (1995) -
Frequency-resolved Monte Carlo
par: Juan Camilo López Carreño, et autres
Publié: (2018) -
Key Factors for Improving the Carcinogenic Risk Assessment of PAH Inhalation Exposure by Monte Carlo Simulation
par: Ning Qin, et autres
Publié: (2021) -
Adaptive Magnetic Hamiltonian Monte Carlo
par: Wilson Tsakane Mongwe, et autres
Publié: (2021)