PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
Abstract Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f266672a200d45e199456ae3087541bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f266672a200d45e199456ae3087541bc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f266672a200d45e199456ae3087541bc2021-12-02T11:52:22ZPhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection10.1038/s41598-017-07199-42045-2322https://doaj.org/article/f266672a200d45e199456ae3087541bc2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07199-4https://doaj.org/toc/2045-2322Abstract Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinformatics tool, PhosphoPredict, that combines protein sequence and functional features to predict kinase-specific substrates and their associated phosphorylation sites for 12 human kinases and kinase families, including ATM, CDKs, GSK-3, MAPKs, PKA, PKB, PKC, and SRC. To elucidate critical determinants, we identified feature subsets that were most informative and relevant for predicting substrate specificity for each individual kinase family. Extensive benchmarking experiments based on both five-fold cross-validation and independent tests indicated that the performance of PhosphoPredict is competitive with that of several other popular prediction tools, including KinasePhos, PPSP, GPS, and Musite. We found that combining protein functional and sequence features significantly improves phosphorylation site prediction performance across all kinases. Application of PhosphoPredict to the entire human proteome identified 150 to 800 potential phosphorylation substrates for each of the 12 kinases or kinase families. PhosphoPredict significantly extends the bioinformatics portfolio for kinase function analysis and will facilitate high-throughput identification of kinase-specific phosphorylation sites, thereby contributing to both basic and translational research programs.Jiangning SongHuilin WangJiawei WangAndré LeierTatiana Marquez-LagoBingjiao YangZiding ZhangTatsuya AkutsuGeoffrey I. WebbRoger J. DalyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-19 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jiangning Song Huilin Wang Jiawei Wang André Leier Tatiana Marquez-Lago Bingjiao Yang Ziding Zhang Tatsuya Akutsu Geoffrey I. Webb Roger J. Daly PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
description |
Abstract Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinformatics tool, PhosphoPredict, that combines protein sequence and functional features to predict kinase-specific substrates and their associated phosphorylation sites for 12 human kinases and kinase families, including ATM, CDKs, GSK-3, MAPKs, PKA, PKB, PKC, and SRC. To elucidate critical determinants, we identified feature subsets that were most informative and relevant for predicting substrate specificity for each individual kinase family. Extensive benchmarking experiments based on both five-fold cross-validation and independent tests indicated that the performance of PhosphoPredict is competitive with that of several other popular prediction tools, including KinasePhos, PPSP, GPS, and Musite. We found that combining protein functional and sequence features significantly improves phosphorylation site prediction performance across all kinases. Application of PhosphoPredict to the entire human proteome identified 150 to 800 potential phosphorylation substrates for each of the 12 kinases or kinase families. PhosphoPredict significantly extends the bioinformatics portfolio for kinase function analysis and will facilitate high-throughput identification of kinase-specific phosphorylation sites, thereby contributing to both basic and translational research programs. |
format |
article |
author |
Jiangning Song Huilin Wang Jiawei Wang André Leier Tatiana Marquez-Lago Bingjiao Yang Ziding Zhang Tatsuya Akutsu Geoffrey I. Webb Roger J. Daly |
author_facet |
Jiangning Song Huilin Wang Jiawei Wang André Leier Tatiana Marquez-Lago Bingjiao Yang Ziding Zhang Tatsuya Akutsu Geoffrey I. Webb Roger J. Daly |
author_sort |
Jiangning Song |
title |
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
title_short |
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
title_full |
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
title_fullStr |
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
title_full_unstemmed |
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
title_sort |
phosphopredict: a bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/f266672a200d45e199456ae3087541bc |
work_keys_str_mv |
AT jiangningsong phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT huilinwang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT jiaweiwang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT andreleier phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT tatianamarquezlago phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT bingjiaoyang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT zidingzhang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT tatsuyaakutsu phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT geoffreyiwebb phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection AT rogerjdaly phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection |
_version_ |
1718395081460809728 |