PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection

Abstract Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiangning Song, Huilin Wang, Jiawei Wang, André Leier, Tatiana Marquez-Lago, Bingjiao Yang, Ziding Zhang, Tatsuya Akutsu, Geoffrey I. Webb, Roger J. Daly
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f266672a200d45e199456ae3087541bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f266672a200d45e199456ae3087541bc
record_format dspace
spelling oai:doaj.org-article:f266672a200d45e199456ae3087541bc2021-12-02T11:52:22ZPhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection10.1038/s41598-017-07199-42045-2322https://doaj.org/article/f266672a200d45e199456ae3087541bc2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07199-4https://doaj.org/toc/2045-2322Abstract Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinformatics tool, PhosphoPredict, that combines protein sequence and functional features to predict kinase-specific substrates and their associated phosphorylation sites for 12 human kinases and kinase families, including ATM, CDKs, GSK-3, MAPKs, PKA, PKB, PKC, and SRC. To elucidate critical determinants, we identified feature subsets that were most informative and relevant for predicting substrate specificity for each individual kinase family. Extensive benchmarking experiments based on both five-fold cross-validation and independent tests indicated that the performance of PhosphoPredict is competitive with that of several other popular prediction tools, including KinasePhos, PPSP, GPS, and Musite. We found that combining protein functional and sequence features significantly improves phosphorylation site prediction performance across all kinases. Application of PhosphoPredict to the entire human proteome identified 150 to 800 potential phosphorylation substrates for each of the 12 kinases or kinase families. PhosphoPredict significantly extends the bioinformatics portfolio for kinase function analysis and will facilitate high-throughput identification of kinase-specific phosphorylation sites, thereby contributing to both basic and translational research programs.Jiangning SongHuilin WangJiawei WangAndré LeierTatiana Marquez-LagoBingjiao YangZiding ZhangTatsuya AkutsuGeoffrey I. WebbRoger J. DalyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-19 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jiangning Song
Huilin Wang
Jiawei Wang
André Leier
Tatiana Marquez-Lago
Bingjiao Yang
Ziding Zhang
Tatsuya Akutsu
Geoffrey I. Webb
Roger J. Daly
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
description Abstract Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinformatics tool, PhosphoPredict, that combines protein sequence and functional features to predict kinase-specific substrates and their associated phosphorylation sites for 12 human kinases and kinase families, including ATM, CDKs, GSK-3, MAPKs, PKA, PKB, PKC, and SRC. To elucidate critical determinants, we identified feature subsets that were most informative and relevant for predicting substrate specificity for each individual kinase family. Extensive benchmarking experiments based on both five-fold cross-validation and independent tests indicated that the performance of PhosphoPredict is competitive with that of several other popular prediction tools, including KinasePhos, PPSP, GPS, and Musite. We found that combining protein functional and sequence features significantly improves phosphorylation site prediction performance across all kinases. Application of PhosphoPredict to the entire human proteome identified 150 to 800 potential phosphorylation substrates for each of the 12 kinases or kinase families. PhosphoPredict significantly extends the bioinformatics portfolio for kinase function analysis and will facilitate high-throughput identification of kinase-specific phosphorylation sites, thereby contributing to both basic and translational research programs.
format article
author Jiangning Song
Huilin Wang
Jiawei Wang
André Leier
Tatiana Marquez-Lago
Bingjiao Yang
Ziding Zhang
Tatsuya Akutsu
Geoffrey I. Webb
Roger J. Daly
author_facet Jiangning Song
Huilin Wang
Jiawei Wang
André Leier
Tatiana Marquez-Lago
Bingjiao Yang
Ziding Zhang
Tatsuya Akutsu
Geoffrey I. Webb
Roger J. Daly
author_sort Jiangning Song
title PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
title_short PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
title_full PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
title_fullStr PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
title_full_unstemmed PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
title_sort phosphopredict: a bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/f266672a200d45e199456ae3087541bc
work_keys_str_mv AT jiangningsong phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT huilinwang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT jiaweiwang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT andreleier phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT tatianamarquezlago phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT bingjiaoyang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT zidingzhang phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT tatsuyaakutsu phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT geoffreyiwebb phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
AT rogerjdaly phosphopredictabioinformaticstoolforpredictionofhumankinasespecificphosphorylationsubstratesandsitesbyintegratingheterogeneousfeatureselection
_version_ 1718395081460809728