Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures

Abstract Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zizhen Zhou, Dewei Chu, Claudio Cazorla
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f27c3540d6a6417c8ea1d156775eefea
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f27c3540d6a6417c8ea1d156775eefea
record_format dspace
spelling oai:doaj.org-article:f27c3540d6a6417c8ea1d156775eefea2021-12-02T18:25:02ZAb initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures10.1038/s41598-021-91018-42045-2322https://doaj.org/article/f27c3540d6a6417c8ea1d156775eefea2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91018-4https://doaj.org/toc/2045-2322Abstract Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mathrm{O}}}}$$ V O ), on the other hand, are key defects to understand and tailor many of the unique functionalities realized in oxide perovskite thin films. Here, we present a comprehensive and technically sound ab initio description of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O in epitaxially strained (001) STO thin films. The novelty of our first-principles study lies in the incorporation of lattice thermal excitations on the formation energy and diffusion properties of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O over wide epitaxial strain conditions ( $$-4 \le \eta \le +4$$ - 4 ≤ η ≤ + 4 %). We found that thermal lattice excitations are necessary to obtain a satisfactory agreement between first-principles calculations and the available experimental data for the formation energy of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O . Furthermore, it is shown that thermal lattice excitations noticeably affect the energy barriers for oxygen ion diffusion, which strongly depend on $$\eta $$ η and are significantly reduced (increased) under tensile (compressive) strain. The present work demonstrates that for a realistic theoretical description of oxygen vacancies in STO thin films is necessary to consider lattice thermal excitations, thus going beyond standard zero-temperature ab initio approaches.Zizhen ZhouDewei ChuClaudio CazorlaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Zizhen Zhou
Dewei Chu
Claudio Cazorla
Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
description Abstract Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mathrm{O}}}}$$ V O ), on the other hand, are key defects to understand and tailor many of the unique functionalities realized in oxide perovskite thin films. Here, we present a comprehensive and technically sound ab initio description of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O in epitaxially strained (001) STO thin films. The novelty of our first-principles study lies in the incorporation of lattice thermal excitations on the formation energy and diffusion properties of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O over wide epitaxial strain conditions ( $$-4 \le \eta \le +4$$ - 4 ≤ η ≤ + 4 %). We found that thermal lattice excitations are necessary to obtain a satisfactory agreement between first-principles calculations and the available experimental data for the formation energy of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O . Furthermore, it is shown that thermal lattice excitations noticeably affect the energy barriers for oxygen ion diffusion, which strongly depend on $$\eta $$ η and are significantly reduced (increased) under tensile (compressive) strain. The present work demonstrates that for a realistic theoretical description of oxygen vacancies in STO thin films is necessary to consider lattice thermal excitations, thus going beyond standard zero-temperature ab initio approaches.
format article
author Zizhen Zhou
Dewei Chu
Claudio Cazorla
author_facet Zizhen Zhou
Dewei Chu
Claudio Cazorla
author_sort Zizhen Zhou
title Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
title_short Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
title_full Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
title_fullStr Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
title_full_unstemmed Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
title_sort ab initio description of oxygen vacancies in epitaxially strained $$\hbox {srtio}_{{3}}$$ srtio 3 at finite temperatures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f27c3540d6a6417c8ea1d156775eefea
work_keys_str_mv AT zizhenzhou abinitiodescriptionofoxygenvacanciesinepitaxiallystrainedhboxsrtio3srtio3atfinitetemperatures
AT deweichu abinitiodescriptionofoxygenvacanciesinepitaxiallystrainedhboxsrtio3srtio3atfinitetemperatures
AT claudiocazorla abinitiodescriptionofoxygenvacanciesinepitaxiallystrainedhboxsrtio3srtio3atfinitetemperatures
_version_ 1718378073001295872