Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures
Abstract Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f27c3540d6a6417c8ea1d156775eefea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f27c3540d6a6417c8ea1d156775eefea |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f27c3540d6a6417c8ea1d156775eefea2021-12-02T18:25:02ZAb initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures10.1038/s41598-021-91018-42045-2322https://doaj.org/article/f27c3540d6a6417c8ea1d156775eefea2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91018-4https://doaj.org/toc/2045-2322Abstract Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mathrm{O}}}}$$ V O ), on the other hand, are key defects to understand and tailor many of the unique functionalities realized in oxide perovskite thin films. Here, we present a comprehensive and technically sound ab initio description of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O in epitaxially strained (001) STO thin films. The novelty of our first-principles study lies in the incorporation of lattice thermal excitations on the formation energy and diffusion properties of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O over wide epitaxial strain conditions ( $$-4 \le \eta \le +4$$ - 4 ≤ η ≤ + 4 %). We found that thermal lattice excitations are necessary to obtain a satisfactory agreement between first-principles calculations and the available experimental data for the formation energy of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O . Furthermore, it is shown that thermal lattice excitations noticeably affect the energy barriers for oxygen ion diffusion, which strongly depend on $$\eta $$ η and are significantly reduced (increased) under tensile (compressive) strain. The present work demonstrates that for a realistic theoretical description of oxygen vacancies in STO thin films is necessary to consider lattice thermal excitations, thus going beyond standard zero-temperature ab initio approaches.Zizhen ZhouDewei ChuClaudio CazorlaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zizhen Zhou Dewei Chu Claudio Cazorla Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures |
description |
Abstract Epitaxially grown $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 (STO) thin films are material enablers for a number of critical energy-conversion and information-storage technologies like electrochemical electrode coatings, solid oxide fuel cells and random access memories. Oxygen vacancies ( $${\mathrm{V}_{{\mathrm{O}}}}$$ V O ), on the other hand, are key defects to understand and tailor many of the unique functionalities realized in oxide perovskite thin films. Here, we present a comprehensive and technically sound ab initio description of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O in epitaxially strained (001) STO thin films. The novelty of our first-principles study lies in the incorporation of lattice thermal excitations on the formation energy and diffusion properties of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O over wide epitaxial strain conditions ( $$-4 \le \eta \le +4$$ - 4 ≤ η ≤ + 4 %). We found that thermal lattice excitations are necessary to obtain a satisfactory agreement between first-principles calculations and the available experimental data for the formation energy of $${\mathrm{V}_{{\mathrm{O}}}}$$ V O . Furthermore, it is shown that thermal lattice excitations noticeably affect the energy barriers for oxygen ion diffusion, which strongly depend on $$\eta $$ η and are significantly reduced (increased) under tensile (compressive) strain. The present work demonstrates that for a realistic theoretical description of oxygen vacancies in STO thin films is necessary to consider lattice thermal excitations, thus going beyond standard zero-temperature ab initio approaches. |
format |
article |
author |
Zizhen Zhou Dewei Chu Claudio Cazorla |
author_facet |
Zizhen Zhou Dewei Chu Claudio Cazorla |
author_sort |
Zizhen Zhou |
title |
Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures |
title_short |
Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures |
title_full |
Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures |
title_fullStr |
Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures |
title_full_unstemmed |
Ab initio description of oxygen vacancies in epitaxially strained $$\hbox {SrTiO}_{{3}}$$ SrTiO 3 at finite temperatures |
title_sort |
ab initio description of oxygen vacancies in epitaxially strained $$\hbox {srtio}_{{3}}$$ srtio 3 at finite temperatures |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f27c3540d6a6417c8ea1d156775eefea |
work_keys_str_mv |
AT zizhenzhou abinitiodescriptionofoxygenvacanciesinepitaxiallystrainedhboxsrtio3srtio3atfinitetemperatures AT deweichu abinitiodescriptionofoxygenvacanciesinepitaxiallystrainedhboxsrtio3srtio3atfinitetemperatures AT claudiocazorla abinitiodescriptionofoxygenvacanciesinepitaxiallystrainedhboxsrtio3srtio3atfinitetemperatures |
_version_ |
1718378073001295872 |