Machine Learning-Based Estimation of Ground Reaction Forces and Knee Joint Kinetics from Inertial Sensors While Performing a Vertical Drop Jump
Nowadays, the use of wearable inertial-based systems together with machine learning methods opens new pathways to assess athletes’ performance. In this paper, we developed a neural network-based approach for the estimation of the Ground Reaction Forces (GRFs) and the three-dimensional knee joint mom...
Guardado en:
Autores principales: | Serena Cerfoglio, Manuela Galli, Marco Tarabini, Filippo Bertozzi, Chiarella Sforza, Matteo Zago |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f287c34a09484ee6918a1ee6d422b599 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Relation of Foot Morphology to Performance in Three Vertical Jumping Tasks
por: Sánchez-Ramírez,Celso, et al.
Publicado: (2020) -
Relationship Between Drop Jump Training–Induced Changes in Passive Plantar Flexor Stiffness and Explosive Performance
por: Ryosuke Ando, et al.
Publicado: (2021) -
The Association Between Force-Velocity Relationship in Countermovement Jump and Sprint With Approach Jump, Linear Acceleration and Change of Direction Ability in Volleyball Players
por: Jernej Pleša, et al.
Publicado: (2021) -
Questionable Utility of the Eccentric Utilization Ratio in Relation to the Performance of Volleyball Players
por: Žiga Kozinc, et al.
Publicado: (2021) -
Hematological dynamics in Jumping Horses
por: Flavia Bochis
Publicado: (2021)