Predicting Changes in Spatiotemporal Groundwater Storage Through the Integration of Multi-Satellite Data and Deep Learning Models
Continuous monitoring and accurate spatiotemporal groundwater storage change predictions can help support sustainable development and efficient groundwater resources management. In this study, remote sensing-based data were used to develop two deep learning predictive models, long short term memory...
Guardado en:
Autores principales: | Jae Young Seo, Sang-Il Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f28ca1d49bec49e38867bbdf805fa5a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of decadal water storage trends from common GRACE releases (RL05, RL06) using spatial diagnostics and a modified triple collocation approach
por: Emad Hasan, et al.
Publicado: (2021) -
The Interannual Fluctuations in Mass Changes and Hydrological Elasticity on the Tibetan Plateau from Geodetic Measurements
por: Meilin He, et al.
Publicado: (2021) -
Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations
por: Pankaj R. Kaushik, et al.
Publicado: (2021) -
GRACE-FO Antenna Phase Center Modeling and Precise Orbit Determination with Single Receiver Ambiguity Resolution
por: Biao Jin, et al.
Publicado: (2021) -
Graceful centers of graceful graphs and universal graceful graphs
por: Makadia,H. M., et al.
Publicado: (2019)