Predicting Changes in Spatiotemporal Groundwater Storage Through the Integration of Multi-Satellite Data and Deep Learning Models
Continuous monitoring and accurate spatiotemporal groundwater storage change predictions can help support sustainable development and efficient groundwater resources management. In this study, remote sensing-based data were used to develop two deep learning predictive models, long short term memory...
Enregistré dans:
Auteurs principaux: | Jae Young Seo, Sang-Il Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f28ca1d49bec49e38867bbdf805fa5a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Comparison of decadal water storage trends from common GRACE releases (RL05, RL06) using spatial diagnostics and a modified triple collocation approach
par: Emad Hasan, et autres
Publié: (2021) -
The Interannual Fluctuations in Mass Changes and Hydrological Elasticity on the Tibetan Plateau from Geodetic Measurements
par: Meilin He, et autres
Publié: (2021) -
Assessing Changes in Terrestrial Water Storage Components over the Great Artesian Basin Using Satellite Observations
par: Pankaj R. Kaushik, et autres
Publié: (2021) -
GRACE-FO Antenna Phase Center Modeling and Precise Orbit Determination with Single Receiver Ambiguity Resolution
par: Biao Jin, et autres
Publié: (2021) -
Graceful centers of graceful graphs and universal graceful graphs
par: Makadia,H. M., et autres
Publié: (2019)