Mooring observed intraseasonal oscillations in the central South China Sea during summer monsoon season

Abstract The South China Sea (SCS) is a high biodiversity region in the world ocean, supports abundant marine resources to the peripheral nations, and affects weather/climate in southeast Asia. A better understanding of its circulation is important to better prediction and management of the SCS. Her...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sen Jan, Ming-Huei Chang, Yiing Jang Yang, Chung-Hsiung Sui, Yu-Hsin Cheng, Yu-Yu Yeh, Chung-Wei Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f2a0d8aee38949268aba5c92b45ee546
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The South China Sea (SCS) is a high biodiversity region in the world ocean, supports abundant marine resources to the peripheral nations, and affects weather/climate in southeast Asia. A better understanding of its circulation is important to better prediction and management of the SCS. Here we reveal sizable intraseasonal oscillations at period ~ 50 days between May and November 2017 in the acoustic Doppler current profiler observed velocity in the central SCS. Satellite observed wind and sea level data together with a process-oriented numerical experiment suggest that the oscillations were caused by locally-generated and remotely-penetrated westward-propagating Rossby waves. The summer southwesterly monsoon strengthening/weakening and the resultant Ekman pumping velocity and shoreward Ekman transport increase/decrease and consequent coastal sea level rise/fall off the west coast of Palawan create westward-propagating Rossby waves causing velocity oscillations in the central SCS. Besides the local generation, Rossby waves with sea level anomaly > 0.2 m propagating from the Pacific through the Sulu Sea into the SCS could contribute to the intraseasonal velocity oscillations in the central SCS.