Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test
The traction power supply system of an Electrical Multiple Unit (EMU) often suffers from overvoltage impact. As an important protection device for on-board electrical equipment, the working environment of a roof arrester is worse than that of a power system. In recent years, the explosion failure of...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2a7ce8950524d5a8c6a22eb84f735d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f2a7ce8950524d5a8c6a22eb84f735d9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f2a7ce8950524d5a8c6a22eb84f735d92021-11-11T15:38:35ZResearch of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test10.3390/electronics102126242079-9292https://doaj.org/article/f2a7ce8950524d5a8c6a22eb84f735d92021-10-01T00:00:00Zhttps://www.mdpi.com/2079-9292/10/21/2624https://doaj.org/toc/2079-9292The traction power supply system of an Electrical Multiple Unit (EMU) often suffers from overvoltage impact. As an important protection device for on-board electrical equipment, the working environment of a roof arrester is worse than that of a power system. In recent years, the explosion failure of the roof arresters of an EMU has occurred from time to time, which seriously endangers the safe operation of high-speed railways. In this paper, the electrical performance test and material micro test of roof arrester in three states of normal, defect, and exploded, are carried out in order to study the internal causes of roof arrester explosion and clarify its deterioration mechanism. Using the DC reference voltage test and leakage current test, the electrical performance differences of normal, defective, and exploded arresters are obtained. By studying the disassembly of an arrester, the appearance characteristics of arrester varistor in three states are obtained. The micro morphology and chemical elements of the varistor are analyzed by Scanning Electron Microscope and Energy Dispersive Spectrometer. The deterioration mechanism of the arrester varistor is then revealed, and preventive measures for the explosion failure of the roof arrester are put forward. The obtained results show that, during the long-term operation of the roof arrester of an EMU, the varistor may be damp, and therefore the aluminum electrode layer and side insulation layer of the varistor may deteriorate. After the deterioration of the aluminum electrode layer, the content of the O element increases, and multiple film structures are formed on the surface. After the deterioration of the side insulating layer, the content of the O element increases, and the surface becomes uneven. Improving the sealing performance requirements of the roof arrester and optimizing the maintenance process can reduce its explosion failure.Qizhe ZhangShenghui WangXinghao DongMingliang LiuQi OuFangcheng LvMDPI AGarticleEMUarresterexplosionmicroscope testElectronicsTK7800-8360ENElectronics, Vol 10, Iss 2624, p 2624 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
EMU arrester explosion microscope test Electronics TK7800-8360 |
spellingShingle |
EMU arrester explosion microscope test Electronics TK7800-8360 Qizhe Zhang Shenghui Wang Xinghao Dong Mingliang Liu Qi Ou Fangcheng Lv Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test |
description |
The traction power supply system of an Electrical Multiple Unit (EMU) often suffers from overvoltage impact. As an important protection device for on-board electrical equipment, the working environment of a roof arrester is worse than that of a power system. In recent years, the explosion failure of the roof arresters of an EMU has occurred from time to time, which seriously endangers the safe operation of high-speed railways. In this paper, the electrical performance test and material micro test of roof arrester in three states of normal, defect, and exploded, are carried out in order to study the internal causes of roof arrester explosion and clarify its deterioration mechanism. Using the DC reference voltage test and leakage current test, the electrical performance differences of normal, defective, and exploded arresters are obtained. By studying the disassembly of an arrester, the appearance characteristics of arrester varistor in three states are obtained. The micro morphology and chemical elements of the varistor are analyzed by Scanning Electron Microscope and Energy Dispersive Spectrometer. The deterioration mechanism of the arrester varistor is then revealed, and preventive measures for the explosion failure of the roof arrester are put forward. The obtained results show that, during the long-term operation of the roof arrester of an EMU, the varistor may be damp, and therefore the aluminum electrode layer and side insulation layer of the varistor may deteriorate. After the deterioration of the aluminum electrode layer, the content of the O element increases, and multiple film structures are formed on the surface. After the deterioration of the side insulating layer, the content of the O element increases, and the surface becomes uneven. Improving the sealing performance requirements of the roof arrester and optimizing the maintenance process can reduce its explosion failure. |
format |
article |
author |
Qizhe Zhang Shenghui Wang Xinghao Dong Mingliang Liu Qi Ou Fangcheng Lv |
author_facet |
Qizhe Zhang Shenghui Wang Xinghao Dong Mingliang Liu Qi Ou Fangcheng Lv |
author_sort |
Qizhe Zhang |
title |
Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test |
title_short |
Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test |
title_full |
Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test |
title_fullStr |
Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test |
title_full_unstemmed |
Research of ZnO Arrester Deterioration Mechanism Based on Electrical Performance and Micro Material Test |
title_sort |
research of zno arrester deterioration mechanism based on electrical performance and micro material test |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/f2a7ce8950524d5a8c6a22eb84f735d9 |
work_keys_str_mv |
AT qizhezhang researchofznoarresterdeteriorationmechanismbasedonelectricalperformanceandmicromaterialtest AT shenghuiwang researchofznoarresterdeteriorationmechanismbasedonelectricalperformanceandmicromaterialtest AT xinghaodong researchofznoarresterdeteriorationmechanismbasedonelectricalperformanceandmicromaterialtest AT mingliangliu researchofznoarresterdeteriorationmechanismbasedonelectricalperformanceandmicromaterialtest AT qiou researchofznoarresterdeteriorationmechanismbasedonelectricalperformanceandmicromaterialtest AT fangchenglv researchofznoarresterdeteriorationmechanismbasedonelectricalperformanceandmicromaterialtest |
_version_ |
1718434836125843456 |