Low-dose x-ray tomography through a deep convolutional neural network
Abstract Synchrotron-based X-ray tomography offers the potential for rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisit...
Guardado en:
Autores principales: | Xiaogang Yang, Vincent De Andrade, William Scullin, Eva L. Dyer, Narayanan Kasthuri, Francesco De Carlo, Doğa Gürsoy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2c3eb2baba2489aa424e39aaef3f1eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021) -
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Kritika Iyer, et al.
Publicado: (2021) -
A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
por: Bruce Lim, et al.
Publicado: (2021) -
Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models
por: Tatiana Konstantinova, et al.
Publicado: (2021) -
An Effective Convolutional Neural Network Model for the Early Detection of COVID-19 Using Chest X-ray Images
por: Muhammad Shoaib Farooq, et al.
Publicado: (2021)