Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil

In-situ rehabilitation of fly ash at dumping sites has rarely been addressed for crop production due to growth-related constraints, largely of heavy metal (HM) contamination in soils and crops. Current communication deals with a novel approach to identify a suitable management option for rejuvenatin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joy Kumar Mandal, Siddhartha Mukherjee, Niharendu Saha, Nibedan Halder, Tufleuddin Biswas, Sanjoy Chakraborty, Sabry Hassan, Mohamed M. Hassan, Ali A. Abo-Shosha, Akbar Hossain
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f2c4f5a3ba6b44b49ae6380fb429f7cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f2c4f5a3ba6b44b49ae6380fb429f7cd
record_format dspace
spelling oai:doaj.org-article:f2c4f5a3ba6b44b49ae6380fb429f7cd2021-11-25T18:29:13ZAssessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil10.3390/molecules262270191420-3049https://doaj.org/article/f2c4f5a3ba6b44b49ae6380fb429f7cd2021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/22/7019https://doaj.org/toc/1420-3049In-situ rehabilitation of fly ash at dumping sites has rarely been addressed for crop production due to growth-related constraints, largely of heavy metal (HM) contamination in soils and crops. Current communication deals with a novel approach to identify a suitable management option for rejuvenating the contaminated soils. In this background, a 60-days incubation experiment was conducted with different fly ash-soil mixtures (50 + 50%, A1; 75 + 25%, A2; 100 + 0%, A3) along with four ameliorants, namely, lime (T1), sodium sulphide (T2), di-ammonium phosphate (T3), and humic acid (T4) at 30 ± 2 °C to assess the ability of different fly ash-soil-ameliorant mixtures in reducing bio-availability of HMs. Diethylenetriaminepentaacetic acid (DTPA)-extractable bio-available HM contents for lead (Pb), cadmium (Cd), nickel (Ni), and chromium (Cr) and their respective ratios to total HM contents under the influence of different treatments were estimated at 0, 15, 30, 45, and 60 days of incubation. Further, the eco-toxicological impact of different treatments on soil microbial properties was studied after 60 days of experimentation. A1T1 significantly recorded the lowest bio-availability of HMs (~49–233% lower) followed by A2T1 (~35–133%) among the treatments. The principal component analysis also confirmed the superiority of A1T1 and A2T1 in this regard. Further, A1T1 achieved low contamination factor and ecological risk with substantial microbial biomass carbon load and dehydrogenase activity. Thus, liming to fly ash-soil mixture at 50:50 may be considered as the best management option for ameliorating metal toxicity. This technology may guide thermal power plants to provide the necessary package of practices for the stakeholders to revive their contaminated lands for better environmental sustainability.Joy Kumar MandalSiddhartha MukherjeeNiharendu SahaNibedan HalderTufleuddin BiswasSanjoy ChakrabortySabry HassanMohamed M. HassanAli A. Abo-ShoshaAkbar HossainMDPI AGarticleameliorantsmetal bioavailabilityenvironmental riskbiological indicatorOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 7019, p 7019 (2021)
institution DOAJ
collection DOAJ
language EN
topic ameliorants
metal bioavailability
environmental risk
biological indicator
Organic chemistry
QD241-441
spellingShingle ameliorants
metal bioavailability
environmental risk
biological indicator
Organic chemistry
QD241-441
Joy Kumar Mandal
Siddhartha Mukherjee
Niharendu Saha
Nibedan Halder
Tufleuddin Biswas
Sanjoy Chakraborty
Sabry Hassan
Mohamed M. Hassan
Ali A. Abo-Shosha
Akbar Hossain
Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil
description In-situ rehabilitation of fly ash at dumping sites has rarely been addressed for crop production due to growth-related constraints, largely of heavy metal (HM) contamination in soils and crops. Current communication deals with a novel approach to identify a suitable management option for rejuvenating the contaminated soils. In this background, a 60-days incubation experiment was conducted with different fly ash-soil mixtures (50 + 50%, A1; 75 + 25%, A2; 100 + 0%, A3) along with four ameliorants, namely, lime (T1), sodium sulphide (T2), di-ammonium phosphate (T3), and humic acid (T4) at 30 ± 2 °C to assess the ability of different fly ash-soil-ameliorant mixtures in reducing bio-availability of HMs. Diethylenetriaminepentaacetic acid (DTPA)-extractable bio-available HM contents for lead (Pb), cadmium (Cd), nickel (Ni), and chromium (Cr) and their respective ratios to total HM contents under the influence of different treatments were estimated at 0, 15, 30, 45, and 60 days of incubation. Further, the eco-toxicological impact of different treatments on soil microbial properties was studied after 60 days of experimentation. A1T1 significantly recorded the lowest bio-availability of HMs (~49–233% lower) followed by A2T1 (~35–133%) among the treatments. The principal component analysis also confirmed the superiority of A1T1 and A2T1 in this regard. Further, A1T1 achieved low contamination factor and ecological risk with substantial microbial biomass carbon load and dehydrogenase activity. Thus, liming to fly ash-soil mixture at 50:50 may be considered as the best management option for ameliorating metal toxicity. This technology may guide thermal power plants to provide the necessary package of practices for the stakeholders to revive their contaminated lands for better environmental sustainability.
format article
author Joy Kumar Mandal
Siddhartha Mukherjee
Niharendu Saha
Nibedan Halder
Tufleuddin Biswas
Sanjoy Chakraborty
Sabry Hassan
Mohamed M. Hassan
Ali A. Abo-Shosha
Akbar Hossain
author_facet Joy Kumar Mandal
Siddhartha Mukherjee
Niharendu Saha
Nibedan Halder
Tufleuddin Biswas
Sanjoy Chakraborty
Sabry Hassan
Mohamed M. Hassan
Ali A. Abo-Shosha
Akbar Hossain
author_sort Joy Kumar Mandal
title Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil
title_short Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil
title_full Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil
title_fullStr Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil
title_full_unstemmed Assessing the Capability of Chemical Ameliorants to Reduce the Bioavailability of Heavy Metals in Bulk Fly Ash Contaminated Soil
title_sort assessing the capability of chemical ameliorants to reduce the bioavailability of heavy metals in bulk fly ash contaminated soil
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f2c4f5a3ba6b44b49ae6380fb429f7cd
work_keys_str_mv AT joykumarmandal assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT siddharthamukherjee assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT niharendusaha assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT nibedanhalder assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT tufleuddinbiswas assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT sanjoychakraborty assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT sabryhassan assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT mohamedmhassan assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT aliaaboshosha assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
AT akbarhossain assessingthecapabilityofchemicalameliorantstoreducethebioavailabilityofheavymetalsinbulkflyashcontaminatedsoil
_version_ 1718411111604158464