Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets
Numerous investigations have been conducted to enhance the motor imagery-based brain–computer interface (BCI) classification performance on various aspects. However, there are limited studies comparing their proposed feature selection framework performance on both objective and subjective datasets....
Guardado en:
Autores principales: | Minh Tran Duc Nguyen, Nhi Yen Phan Xuan, Bao Minh Pham, Trung-Hau Nguyen, Quang-Linh Huynh, Quoc Khai Le |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2d154038dec4130adfe7d205f77312b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dual Head and Dual Attention in Deep Learning for End-to-End EEG Motor Imagery Classification
por: Meiyan Xu, et al.
Publicado: (2021) -
An assessment of sedimentation in Terengganu River, Malaysia using satellite imagery
por: Awatif Aziz, et al.
Publicado: (2021) -
Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
por: Jun Yang, et al.
Publicado: (2021) -
Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification
por: Daily Milanés-Hermosilla, et al.
Publicado: (2021) -
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
por: Amira Echtioui, et al.
Publicado: (2021)