Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets
Numerous investigations have been conducted to enhance the motor imagery-based brain–computer interface (BCI) classification performance on various aspects. However, there are limited studies comparing their proposed feature selection framework performance on both objective and subjective datasets....
Enregistré dans:
Auteurs principaux: | Minh Tran Duc Nguyen, Nhi Yen Phan Xuan, Bao Minh Pham, Trung-Hau Nguyen, Quang-Linh Huynh, Quoc Khai Le |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f2d154038dec4130adfe7d205f77312b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dual Head and Dual Attention in Deep Learning for End-to-End EEG Motor Imagery Classification
par: Meiyan Xu, et autres
Publié: (2021) -
An assessment of sedimentation in Terengganu River, Malaysia using satellite imagery
par: Awatif Aziz, et autres
Publié: (2021) -
Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
par: Jun Yang, et autres
Publié: (2021) -
Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification
par: Daily Milanés-Hermosilla, et autres
Publié: (2021) -
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
par: Amira Echtioui, et autres
Publié: (2021)