An Ensemble Method for Missing Data of Environmental Sensor Considering Univariate and Multivariate Characteristics
With rapid urbanization, awareness of environmental pollution is growing rapidly and, accordingly, interest in environmental sensors that measure atmospheric and indoor air quality is increasing. Since these IoT-based environmental sensors are sensitive and value reliability, it is essential to deal...
Guardado en:
Autores principales: | Chanyoung Choi, Haewoong Jung, Jaehyuk Cho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2eff07a07814bb78470a1c93081f821 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Influence of Missing Data on Disabilities in Patients Treated with High-Dose Spinal Cord Stimulation: A Tipping Point Sensitivity Analysis
por: Lisa Goudman, et al.
Publicado: (2021) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021) -
Accurate Single-Cell Clustering through Ensemble Similarity Learning
por: Hyundoo Jeong, et al.
Publicado: (2021) -
Strain-Specific Liver Metabolite Profiles in Medaka
por: Hannah Soergel, et al.
Publicado: (2021)