Deep neural networks detect suicide risk from textual facebook posts
Abstract Detection of suicide risk is a highly prioritized, yet complicated task. Five decades of research have produced predictions slightly better than chance (AUCs = 0.56–0.58). In this study, Artificial Neural Network (ANN) models were constructed to predict suicide risk from everyday language o...
Guardado en:
Autores principales: | Yaakov Ophir, Refael Tikochinski, Christa S. C. Asterhan, Itay Sisso, Roi Reichart |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f2eff099f81a47a5be67597ff0d20008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep graph neural network-based prediction of acute suicidal ideation in young adults
por: Kyu Sung Choi, et al.
Publicado: (2021) -
Author Correction: Deep graph neural network-based prediction of acute suicidal ideation in young adults
por: Kyu Sung Choi, et al.
Publicado: (2021) -
Egyptian Facebook satire: a post-Spring carnivalesque
por: Yomna Elsayed
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019) -
Coastal Waste Detection Based on Deep Convolutional Neural Networks
por: Chengjuan Ren, et al.
Publicado: (2021)