Comprehensive verbal fluency features predict executive function performance

Abstract Semantic verbal fluency (sVF) tasks are commonly used in clinical diagnostic batteries as well as in a research context. When performing sVF tasks to assess executive functions (EFs) the sum of correctly produced words is the main measure. Although previous research indicates potentially be...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Julia Amunts, Julia A. Camilleri, Simon B. Eickhoff, Kaustubh R. Patil, Stefan Heim, Georg G. von Polier, Susanne Weis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f2f23f1f061940c7b4a9da597fe7ecb1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Semantic verbal fluency (sVF) tasks are commonly used in clinical diagnostic batteries as well as in a research context. When performing sVF tasks to assess executive functions (EFs) the sum of correctly produced words is the main measure. Although previous research indicates potentially better insights into EF performance by the use of finer grained sVF information, this has not yet been objectively evaluated. To investigate the potential of employing a finer grained sVF feature set to predict EF performance, healthy monolingual German speaking participants (n = 230) were tested with a comprehensive EF test battery and sVF tasks, from which features including sum scores, error types, speech breaks and semantic relatedness were extracted. A machine learning method was applied to predict EF scores from sVF features in previously unseen subjects. To investigate the predictive power of the advanced sVF feature set, we compared it to the commonly used sum score analysis. Results revealed that 8 / 14 EF tests were predicted significantly using the comprehensive sVF feature set, which outperformed sum scores particularly in predicting cognitive flexibility and inhibitory processes. These findings highlight the predictive potential of a comprehensive evaluation of sVF tasks which might be used as diagnostic screening of EFs.