Improved Byzantine Fault-Tolerant Algorithm Based on Alliance Chain

Alliance chain is a typical multicenter block chain and is easily implemented, so it is supported by more and more enterprises and governments. This paper analyzes the advantages and disadvantages of the Practical Byzantine Fault Tolerance (PBFT) in the alliance chain application scene. Aiming at th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wuqi Gao, Wubing Mu, Shanshan Huang, Man Wang, Xiaoyan Li
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
T
Acceso en línea:https://doaj.org/article/f2f2d642c3ed424399da21bb3ec099b0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Alliance chain is a typical multicenter block chain and is easily implemented, so it is supported by more and more enterprises and governments. This paper analyzes the advantages and disadvantages of the Practical Byzantine Fault Tolerance (PBFT) in the alliance chain application scene. Aiming at the low efficiency of multinode consensus of the PBFT algorithm, the C-Raft-PBFT consensus algorithm is proposed. By integrating the Raft algorithm and the PBFT algorithm with the credit mechanism, designing node credit evaluation and grading protocols, and increasing Byzantine node detection based on feedback mechanism and other methods, the system efficiency is improved. The experiment results show that the improved algorithm has better throughput and lower delay, and the system’s fault tolerance is also improved. Among them, the delay is reduced by 1.93 seconds on average; in the case of an increase in system nodes, the number of nodes in the experimental data is between 200 and 225, and the throughput is increased by 6.46% on average.