AAWS-Net: Anatomy-aware weakly-supervised learning network for breast mass segmentation.
Accurate segmentation of breast masses is an essential step in computer aided diagnosis of breast cancer. The scarcity of annotated training data greatly hinders the model's generalization ability, especially for the deep learning based methods. However, high-quality image-level annotations are...
Guardado en:
Autores principales: | Yeheng Sun, Yule Ji |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f30065215bbc4db5ba5c37eee5fabf4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Weakly supervised underwater fish segmentation using affinity LCFCN
por: Issam H. Laradji, et al.
Publicado: (2021) -
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
por: Syeda Furruka Banu, et al.
Publicado: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Fahdi Kanavati, et al.
Publicado: (2021) -
Weakly-supervised learning for lung carcinoma classification using deep learning
por: Fahdi Kanavati, et al.
Publicado: (2020) -
Weakly supervised temporal model for prediction of breast cancer distant recurrence
por: Josh Sanyal, et al.
Publicado: (2021)