AAWS-Net: Anatomy-aware weakly-supervised learning network for breast mass segmentation.
Accurate segmentation of breast masses is an essential step in computer aided diagnosis of breast cancer. The scarcity of annotated training data greatly hinders the model's generalization ability, especially for the deep learning based methods. However, high-quality image-level annotations are...
Enregistré dans:
Auteurs principaux: | Yeheng Sun, Yule Ji |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f30065215bbc4db5ba5c37eee5fabf4c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Weakly supervised underwater fish segmentation using affinity LCFCN
par: Issam H. Laradji, et autres
Publié: (2021) -
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
par: Syeda Furruka Banu, et autres
Publié: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
par: Fahdi Kanavati, et autres
Publié: (2021) -
Weakly-supervised learning for lung carcinoma classification using deep learning
par: Fahdi Kanavati, et autres
Publié: (2020) -
Weakly supervised temporal model for prediction of breast cancer distant recurrence
par: Josh Sanyal, et autres
Publié: (2021)