Non-melanoma skin cancer segmentation for histopathology dataset
Densely labelled segmentation data for digital pathology images is costly to produce but is invaluable to training effective machine learning models. We make available 290 hand-annotated histopathology tissue sections of the 3 most common skin cancers; basal cell carcinoma (BCC), squamous cell carci...
Guardado en:
Autores principales: | Simon M. Thomas, James G. Lefevre, Glenn Baxter, Nicholas A. Hamilton |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f31868d8272840e993f554c05907ffb6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
QR-DN1.0: A new distorted and noisy QRs dataset
por: Milad Monfared, et al.
Publicado: (2021) -
Impact of a deep learning assistant on the histopathologic classification of liver cancer
por: Amirhossein Kiani, et al.
Publicado: (2020) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
Synthetic image dataset of shaft junctions inside wind turbines in presence or absence of oil leaks
por: Matteo Cardoni, et al.
Publicado: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
por: Charlotte Syrykh, et al.
Publicado: (2020)