Non-melanoma skin cancer segmentation for histopathology dataset
Densely labelled segmentation data for digital pathology images is costly to produce but is invaluable to training effective machine learning models. We make available 290 hand-annotated histopathology tissue sections of the 3 most common skin cancers; basal cell carcinoma (BCC), squamous cell carci...
Enregistré dans:
Auteurs principaux: | Simon M. Thomas, James G. Lefevre, Glenn Baxter, Nicholas A. Hamilton |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f31868d8272840e993f554c05907ffb6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
QR-DN1.0: A new distorted and noisy QRs dataset
par: Milad Monfared, et autres
Publié: (2021) -
Impact of a deep learning assistant on the histopathologic classification of liver cancer
par: Amirhossein Kiani, et autres
Publié: (2020) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
par: James A. Diao, et autres
Publié: (2021) -
Synthetic image dataset of shaft junctions inside wind turbines in presence or absence of oil leaks
par: Matteo Cardoni, et autres
Publié: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
par: Charlotte Syrykh, et autres
Publié: (2020)