Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales
Rangelands are composed of patchy, highly dynamic herbaceous plant communities that are difficult to quantify across broad spatial extents at resolutions relevant to their characteristic spatial scales. Furthermore, differentiation of these plant communities using remotely sensed observations is com...
Enregistré dans:
Auteurs principaux: | Rowan Gaffney, David J. Augustine, Sean P. Kearney, Lauren M. Porensky |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f31fefcd964e4a9f972ed32b054f2862 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
par: Itiya Aneece, et autres
Publié: (2021) -
PHOTOCATALYTIC ACTIVITY OF TiO2 NANOMATERIAL
par: JAIN,ABHILASHA, et autres
Publié: (2017) -
Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on Hyperspectral Measurements
par: Lili Luo, et autres
Publié: (2021) -
Inspiring the Next Generation of HPC Engineers with Reconfigurable, Multi-Tenant Resources for Teaching and Research
par: Taha Al-Jody, et autres
Publié: (2021) -
Evaluation of Total Nitrogen in Water via Airborne Hyperspectral Data: Potential of Fractional Order Discretization Algorithm and Discrete Wavelet Transform Analysis
par: Jinhua Liu, et autres
Publié: (2021)