Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales
Rangelands are composed of patchy, highly dynamic herbaceous plant communities that are difficult to quantify across broad spatial extents at resolutions relevant to their characteristic spatial scales. Furthermore, differentiation of these plant communities using remotely sensed observations is com...
Guardado en:
Autores principales: | Rowan Gaffney, David J. Augustine, Sean P. Kearney, Lauren M. Porensky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f31fefcd964e4a9f972ed32b054f2862 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
por: Itiya Aneece, et al.
Publicado: (2021) -
PHOTOCATALYTIC ACTIVITY OF TiO2 NANOMATERIAL
por: JAIN,ABHILASHA, et al.
Publicado: (2017) -
Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on Hyperspectral Measurements
por: Lili Luo, et al.
Publicado: (2021) -
Inspiring the Next Generation of HPC Engineers with Reconfigurable, Multi-Tenant Resources for Teaching and Research
por: Taha Al-Jody, et al.
Publicado: (2021) -
Evaluation of Total Nitrogen in Water via Airborne Hyperspectral Data: Potential of Fractional Order Discretization Algorithm and Discrete Wavelet Transform Analysis
por: Jinhua Liu, et al.
Publicado: (2021)