Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network

This paper aims at assessing the impact of retrofitting an existing, 730 MW<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>e</mi></msub></semantics><...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roeland De Meulenaere, Tim Maertens, Ale Sikkema, Rune Brusletto, Tanja Barth, Julien Blondeau
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
CHP
T
Acceso en línea:https://doaj.org/article/f321b3669de94d33bbb14dee0a1110aa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f321b3669de94d33bbb14dee0a1110aa
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic biomass
CHP
retrofit
exergy
steam-explosion
Technology
T
spellingShingle biomass
CHP
retrofit
exergy
steam-explosion
Technology
T
Roeland De Meulenaere
Tim Maertens
Ale Sikkema
Rune Brusletto
Tanja Barth
Julien Blondeau
Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
description This paper aims at assessing the impact of retrofitting an existing, 730 MW<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>e</mi></msub></semantics></math></inline-formula>, coal-fired power plant into a biomass-fired combined heat and power (CHP) plant on its energetic and exergetic performances. A comprehensive thermodynamic model of the power plant was developed and validated against field data, resulting in less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> deviation between the model and the measurements for the main process parameters. The validated model was then used to predict the behaviour of the biomass CHP after retrofitting. The modelled CHP unit is coupled to a steam-explosion biomass upgrading plant, a biorefinery process, and a high-temperature heat network. 13 scenarios were studied. At constant boiler load, delivering heat to the considered heat clients can increase the total energy efficiency of the plant from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>44</mn><mo>%</mo></mrow></semantics></math></inline-formula> (electricity only) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>64</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>35</mn><mo>%</mo></mrow></semantics></math></inline-formula>. A total energy efficiency of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67</mn><mo>%</mo></mrow></semantics></math></inline-formula> could be reached by lowering the network temperature from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>120</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>70</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C. Identifying the needed heat clients could, however, represent a limiting factor to reach such high efficiencies. For a constant power demand, increasing the boiler load from 80 to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> in order to provide additional heat makes the total energy efficiency increase from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>55</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>36</mn><mo>%</mo></mrow></semantics></math></inline-formula>.
format article
author Roeland De Meulenaere
Tim Maertens
Ale Sikkema
Rune Brusletto
Tanja Barth
Julien Blondeau
author_facet Roeland De Meulenaere
Tim Maertens
Ale Sikkema
Rune Brusletto
Tanja Barth
Julien Blondeau
author_sort Roeland De Meulenaere
title Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
title_short Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
title_full Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
title_fullStr Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
title_full_unstemmed Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
title_sort energetic and exergetic performances of a retrofitted, large-scale, biomass-fired chp coupled to a steam-explosion biomass upgrading plant, a biorefinery process and a high-temperature heat network
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f321b3669de94d33bbb14dee0a1110aa
work_keys_str_mv AT roelanddemeulenaere energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork
AT timmaertens energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork
AT alesikkema energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork
AT runebrusletto energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork
AT tanjabarth energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork
AT julienblondeau energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork
_version_ 1718412322769207296
spelling oai:doaj.org-article:f321b3669de94d33bbb14dee0a1110aa2021-11-25T17:28:15ZEnergetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network10.3390/en142277201996-1073https://doaj.org/article/f321b3669de94d33bbb14dee0a1110aa2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/22/7720https://doaj.org/toc/1996-1073This paper aims at assessing the impact of retrofitting an existing, 730 MW<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>e</mi></msub></semantics></math></inline-formula>, coal-fired power plant into a biomass-fired combined heat and power (CHP) plant on its energetic and exergetic performances. A comprehensive thermodynamic model of the power plant was developed and validated against field data, resulting in less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> deviation between the model and the measurements for the main process parameters. The validated model was then used to predict the behaviour of the biomass CHP after retrofitting. The modelled CHP unit is coupled to a steam-explosion biomass upgrading plant, a biorefinery process, and a high-temperature heat network. 13 scenarios were studied. At constant boiler load, delivering heat to the considered heat clients can increase the total energy efficiency of the plant from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>44</mn><mo>%</mo></mrow></semantics></math></inline-formula> (electricity only) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>64</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>35</mn><mo>%</mo></mrow></semantics></math></inline-formula>. A total energy efficiency of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67</mn><mo>%</mo></mrow></semantics></math></inline-formula> could be reached by lowering the network temperature from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>120</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>70</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C. Identifying the needed heat clients could, however, represent a limiting factor to reach such high efficiencies. For a constant power demand, increasing the boiler load from 80 to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> in order to provide additional heat makes the total energy efficiency increase from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>55</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>36</mn><mo>%</mo></mrow></semantics></math></inline-formula>.Roeland De MeulenaereTim MaertensAle SikkemaRune BruslettoTanja BarthJulien BlondeauMDPI AGarticlebiomassCHPretrofitexergysteam-explosionTechnologyTENEnergies, Vol 14, Iss 7720, p 7720 (2021)