Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network
This paper aims at assessing the impact of retrofitting an existing, 730 MW<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>e</mi></msub></semantics><...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f321b3669de94d33bbb14dee0a1110aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f321b3669de94d33bbb14dee0a1110aa |
---|---|
record_format |
dspace |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
biomass CHP retrofit exergy steam-explosion Technology T |
spellingShingle |
biomass CHP retrofit exergy steam-explosion Technology T Roeland De Meulenaere Tim Maertens Ale Sikkema Rune Brusletto Tanja Barth Julien Blondeau Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network |
description |
This paper aims at assessing the impact of retrofitting an existing, 730 MW<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>e</mi></msub></semantics></math></inline-formula>, coal-fired power plant into a biomass-fired combined heat and power (CHP) plant on its energetic and exergetic performances. A comprehensive thermodynamic model of the power plant was developed and validated against field data, resulting in less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> deviation between the model and the measurements for the main process parameters. The validated model was then used to predict the behaviour of the biomass CHP after retrofitting. The modelled CHP unit is coupled to a steam-explosion biomass upgrading plant, a biorefinery process, and a high-temperature heat network. 13 scenarios were studied. At constant boiler load, delivering heat to the considered heat clients can increase the total energy efficiency of the plant from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>44</mn><mo>%</mo></mrow></semantics></math></inline-formula> (electricity only) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>64</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>35</mn><mo>%</mo></mrow></semantics></math></inline-formula>. A total energy efficiency of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67</mn><mo>%</mo></mrow></semantics></math></inline-formula> could be reached by lowering the network temperature from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>120</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>70</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C. Identifying the needed heat clients could, however, represent a limiting factor to reach such high efficiencies. For a constant power demand, increasing the boiler load from 80 to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> in order to provide additional heat makes the total energy efficiency increase from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>55</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>36</mn><mo>%</mo></mrow></semantics></math></inline-formula>. |
format |
article |
author |
Roeland De Meulenaere Tim Maertens Ale Sikkema Rune Brusletto Tanja Barth Julien Blondeau |
author_facet |
Roeland De Meulenaere Tim Maertens Ale Sikkema Rune Brusletto Tanja Barth Julien Blondeau |
author_sort |
Roeland De Meulenaere |
title |
Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network |
title_short |
Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network |
title_full |
Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network |
title_fullStr |
Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network |
title_full_unstemmed |
Energetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network |
title_sort |
energetic and exergetic performances of a retrofitted, large-scale, biomass-fired chp coupled to a steam-explosion biomass upgrading plant, a biorefinery process and a high-temperature heat network |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/f321b3669de94d33bbb14dee0a1110aa |
work_keys_str_mv |
AT roelanddemeulenaere energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork AT timmaertens energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork AT alesikkema energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork AT runebrusletto energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork AT tanjabarth energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork AT julienblondeau energeticandexergeticperformancesofaretrofittedlargescalebiomassfiredchpcoupledtoasteamexplosionbiomassupgradingplantabiorefineryprocessandahightemperatureheatnetwork |
_version_ |
1718412322769207296 |
spelling |
oai:doaj.org-article:f321b3669de94d33bbb14dee0a1110aa2021-11-25T17:28:15ZEnergetic and Exergetic Performances of a Retrofitted, Large-Scale, Biomass-Fired CHP Coupled to a Steam-Explosion Biomass Upgrading Plant, a Biorefinery Process and a High-Temperature Heat Network10.3390/en142277201996-1073https://doaj.org/article/f321b3669de94d33bbb14dee0a1110aa2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/22/7720https://doaj.org/toc/1996-1073This paper aims at assessing the impact of retrofitting an existing, 730 MW<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>e</mi></msub></semantics></math></inline-formula>, coal-fired power plant into a biomass-fired combined heat and power (CHP) plant on its energetic and exergetic performances. A comprehensive thermodynamic model of the power plant was developed and validated against field data, resulting in less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> deviation between the model and the measurements for the main process parameters. The validated model was then used to predict the behaviour of the biomass CHP after retrofitting. The modelled CHP unit is coupled to a steam-explosion biomass upgrading plant, a biorefinery process, and a high-temperature heat network. 13 scenarios were studied. At constant boiler load, delivering heat to the considered heat clients can increase the total energy efficiency of the plant from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>44</mn><mo>%</mo></mrow></semantics></math></inline-formula> (electricity only) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>64</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>35</mn><mo>%</mo></mrow></semantics></math></inline-formula>. A total energy efficiency of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67</mn><mo>%</mo></mrow></semantics></math></inline-formula> could be reached by lowering the network temperature from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>120</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>70</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C. Identifying the needed heat clients could, however, represent a limiting factor to reach such high efficiencies. For a constant power demand, increasing the boiler load from 80 to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> in order to provide additional heat makes the total energy efficiency increase from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>55</mn><mo>%</mo></mrow></semantics></math></inline-formula>, while the total exergy efficiency decreases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>39</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>36</mn><mo>%</mo></mrow></semantics></math></inline-formula>.Roeland De MeulenaereTim MaertensAle SikkemaRune BruslettoTanja BarthJulien BlondeauMDPI AGarticlebiomassCHPretrofitexergysteam-explosionTechnologyTENEnergies, Vol 14, Iss 7720, p 7720 (2021) |