A hybrid level set model for image segmentation.
Active contour models driven by local binary fitting energy can segment images with inhomogeneous intensity, while being prone to falling into a local minima. However, the segmentation result largely depends on the location of the initial contour. We propose an active contour model with global and l...
Guardado en:
Autores principales: | Weiqin Chen, Changjiang Liu, Anup Basu, Bin Pan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f324a1ea6d2e48f3be42ddae4032c3aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A novel combined level set model for automatic MR image segmentation
por: Li Jianzhang, et al.
Publicado: (2020) -
A weighted region-based level set method for image segmentation with intensity inhomogeneity.
por: Haiping Yu, et al.
Publicado: (2021) -
Automatic Thalamus Segmentation from Magnetic Resonance Images Using Multiple Atlases Level Set Framework (MALSF)
por: Minghui Zhang, et al.
Publicado: (2017) -
Multi-level dilated residual network for biomedical image segmentation
por: Naga Raju Gudhe, et al.
Publicado: (2021) -
An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.
por: Ronald van 't Klooster, et al.
Publicado: (2013)