A hybrid level set model for image segmentation.
Active contour models driven by local binary fitting energy can segment images with inhomogeneous intensity, while being prone to falling into a local minima. However, the segmentation result largely depends on the location of the initial contour. We propose an active contour model with global and l...
Enregistré dans:
Auteurs principaux: | Weiqin Chen, Changjiang Liu, Anup Basu, Bin Pan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f324a1ea6d2e48f3be42ddae4032c3aa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A novel combined level set model for automatic MR image segmentation
par: Li Jianzhang, et autres
Publié: (2020) -
A weighted region-based level set method for image segmentation with intensity inhomogeneity.
par: Haiping Yu, et autres
Publié: (2021) -
Automatic Thalamus Segmentation from Magnetic Resonance Images Using Multiple Atlases Level Set Framework (MALSF)
par: Minghui Zhang, et autres
Publié: (2017) -
Multi-level dilated residual network for biomedical image segmentation
par: Naga Raju Gudhe, et autres
Publié: (2021) -
An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.
par: Ronald van 't Klooster, et autres
Publié: (2013)