Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones.
We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our obje...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3439841a74f4edb982e78202d223d48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f3439841a74f4edb982e78202d223d48 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f3439841a74f4edb982e78202d223d482021-12-02T20:04:43ZComparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones.1932-620310.1371/journal.pone.0254627https://doaj.org/article/f3439841a74f4edb982e78202d223d482021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0254627https://doaj.org/toc/1932-6203We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM2.5, A9 had the strongest retention capacity for PM2.5-10, A0 had the strongest retention capacity for PM>10, and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity.Jie YuLi-Ren XuChong LiuYong-Tan LiXin-Bo PangZhao-Hua LiuMin-Sheng YangYan-Hui LiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0254627 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jie Yu Li-Ren Xu Chong Liu Yong-Tan Li Xin-Bo Pang Zhao-Hua Liu Min-Sheng Yang Yan-Hui Li Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. |
description |
We used fresh leaves of Sophora japonica L. variety 'Qingyun 1' (A0) and 10 superior clones of the same species (A1-A10) to explore leaf morphological characteristics and total particle retention per unit leaf area under natural and artificial simulated dust deposition treatments. Our objectives were to explore the relationship between the two methods and to assess particle size distribution, X-ray fluorescence (XRF) heavy metal content, and scanning electron and atomic force microscopy (SEM and AFM) characteristics of leaf surface microstructure. Using the membership function method, we evaluated the dust retention capacity of each clone based on the mean degree of membership of its dust retention index. Using correlation analysis, we selected leaf morphological and SEM and AFM indices related significantly to dust retention capacity. Sophora japonica showed excellent overall dust retention capacity, although this capacity differed among clones. A5 had the strongest overall retention capacity, A2 had the strongest retention capacity for PM2.5, A9 had the strongest retention capacity for PM2.5-10, A0 had the strongest retention capacity for PM>10, and A2 had the strongest specific surface area (SSA) and heavy metal adsorption capacity. Overall, A1 had the strongest comprehensive dust retention ability, A5 was intermediate, and A7 had the weakest capacity. Certain leaf morphological and SEM and AFM characteristic indices correlated significantly with the dust retention capacity. |
format |
article |
author |
Jie Yu Li-Ren Xu Chong Liu Yong-Tan Li Xin-Bo Pang Zhao-Hua Liu Min-Sheng Yang Yan-Hui Li |
author_facet |
Jie Yu Li-Ren Xu Chong Liu Yong-Tan Li Xin-Bo Pang Zhao-Hua Liu Min-Sheng Yang Yan-Hui Li |
author_sort |
Jie Yu |
title |
Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. |
title_short |
Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. |
title_full |
Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. |
title_fullStr |
Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. |
title_full_unstemmed |
Comparative analysis of the dust retention capacity and leaf microstructure of 11 Sophora japonica clones. |
title_sort |
comparative analysis of the dust retention capacity and leaf microstructure of 11 sophora japonica clones. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/f3439841a74f4edb982e78202d223d48 |
work_keys_str_mv |
AT jieyu comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT lirenxu comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT chongliu comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT yongtanli comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT xinbopang comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT zhaohualiu comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT minshengyang comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones AT yanhuili comparativeanalysisofthedustretentioncapacityandleafmicrostructureof11sophorajaponicaclones |
_version_ |
1718375579305115648 |