Cell differentiation of pluripotent tissue sheets immobilized on supported membranes displaying cadherin-11.

Investigating cohesive tissue sheets in controlled cultures still poses a challenge since the complex intercellular interactions are difficult to mimic in in vitro models. We used supported lipid membranes functionalized by the adhesive part of the extracellular domain of the cell adhesion molecule...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexander Körner, Christina Deichmann, Fernanda F Rossetti, Almut Köhler, Oleg V Konovalov, Doris Wedlich, Motomu Tanaka
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f34af24a65a94323b2eb4c0e800be332
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Investigating cohesive tissue sheets in controlled cultures still poses a challenge since the complex intercellular interactions are difficult to mimic in in vitro models. We used supported lipid membranes functionalized by the adhesive part of the extracellular domain of the cell adhesion molecule cadherin-11 for the immobilization of pluripotent tissue sheets, the animal cap isolated from Xenopus laevis blastula stage embryos. Cadherin-11 was bound via histidine tag to lipid membranes with chelator head groups. In the first step, quantitative functionalization of the membranes with cadherin-11 was confirmed by quartz crystal microbalance and high energy specular X-ray reflectivity. In the next step, animal cap tissue sheets induced to neural crest cell fate were cultured on the membranes functionalized with cadherin-11. The adhesion of cells within the cohesive tissue was significantly dependent on changes in lateral densities of cadherin-11. The formation of filopodia and lamellipodia in the cohesive tissue verified the viability and sustainability of the culture over several hours. The expression of the transcription factor slug in externally induced tissue demonstrated the applicability of lipid membranes displaying adhesive molecules for controlled differentiation of cohesive pluripotent tissue sheets.