Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic
Abstract Mapping Arctic renewable energy resources, particularly wind, is important to ensure the transition into renewable energy in this environmentally vulnerable region. The statistical characterisation of wind is critical for effectively assessing energy potential and planning wind park sites a...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f35c4dab699545dcb7270426635f61ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f35c4dab699545dcb7270426635f61ab |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f35c4dab699545dcb7270426635f61ab2021-12-02T14:17:27ZAssessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic10.1038/s41598-021-87299-42045-2322https://doaj.org/article/f35c4dab699545dcb7270426635f61ab2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87299-4https://doaj.org/toc/2045-2322Abstract Mapping Arctic renewable energy resources, particularly wind, is important to ensure the transition into renewable energy in this environmentally vulnerable region. The statistical characterisation of wind is critical for effectively assessing energy potential and planning wind park sites and is, therefore, an important input for wind power policymaking. In this article, different probability density functions are used to model wind speed for five wind parks in the Norwegian Arctic region. A comparison between wind speed data from numerical weather prediction models and measurements is made, and a probability analysis for the wind speed interval corresponding to the rated power, which is largely absent in the existing literature, is presented. The results of the present study suggest that no single probability function outperforms across all scenarios. However, some differences emerged from the models when applied to different wind parks. The Nakagami and Generalised extreme value distributions were chosen for the numerical weather predicted prediction and the observed wind speed modelling, respectively, due to their superiority and stability compared with other methods. This paper, therefore, provides a novel direction for understanding the numerical weather prediction wind model and shows that its speed statistical features are better captured than those of real wind.Hao ChenYngve BirkelundStian Normann AnfinsenReidar Staupe-DelgadoFuqing YuanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hao Chen Yngve Birkelund Stian Normann Anfinsen Reidar Staupe-Delgado Fuqing Yuan Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic |
description |
Abstract Mapping Arctic renewable energy resources, particularly wind, is important to ensure the transition into renewable energy in this environmentally vulnerable region. The statistical characterisation of wind is critical for effectively assessing energy potential and planning wind park sites and is, therefore, an important input for wind power policymaking. In this article, different probability density functions are used to model wind speed for five wind parks in the Norwegian Arctic region. A comparison between wind speed data from numerical weather prediction models and measurements is made, and a probability analysis for the wind speed interval corresponding to the rated power, which is largely absent in the existing literature, is presented. The results of the present study suggest that no single probability function outperforms across all scenarios. However, some differences emerged from the models when applied to different wind parks. The Nakagami and Generalised extreme value distributions were chosen for the numerical weather predicted prediction and the observed wind speed modelling, respectively, due to their superiority and stability compared with other methods. This paper, therefore, provides a novel direction for understanding the numerical weather prediction wind model and shows that its speed statistical features are better captured than those of real wind. |
format |
article |
author |
Hao Chen Yngve Birkelund Stian Normann Anfinsen Reidar Staupe-Delgado Fuqing Yuan |
author_facet |
Hao Chen Yngve Birkelund Stian Normann Anfinsen Reidar Staupe-Delgado Fuqing Yuan |
author_sort |
Hao Chen |
title |
Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic |
title_short |
Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic |
title_full |
Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic |
title_fullStr |
Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic |
title_full_unstemmed |
Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic |
title_sort |
assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the arctic |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f35c4dab699545dcb7270426635f61ab |
work_keys_str_mv |
AT haochen assessingprobabilisticmodellingforwindspeedfromnumericalweatherpredictionmodelandobservationinthearctic AT yngvebirkelund assessingprobabilisticmodellingforwindspeedfromnumericalweatherpredictionmodelandobservationinthearctic AT stiannormannanfinsen assessingprobabilisticmodellingforwindspeedfromnumericalweatherpredictionmodelandobservationinthearctic AT reidarstaupedelgado assessingprobabilisticmodellingforwindspeedfromnumericalweatherpredictionmodelandobservationinthearctic AT fuqingyuan assessingprobabilisticmodellingforwindspeedfromnumericalweatherpredictionmodelandobservationinthearctic |
_version_ |
1718391641667010560 |